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ABSTRACT: The study addresses the challenge of interobserver variability 

in the treatment decisions for kidney cancers, a concern highlighted by the 

anticipated 73,750 kidney cancer diagnoses in the United States in 2020. This 

variability often arises due to the subtle differences in imaging characteristics 

of tumor subtypes. To address this issue, we propose an end-to-end deep 

learning model leveraging multi-phase CT scans to differentiate between five 

primary histologic subtypes of kidney cancers, encompassing both benign and 

malignant tumors. The proposed model demonstrates remarkable precision in 

identifying kidney cancers, even those of minimal size. In preparing the data 

for analysis, we divided it into training and validation test sets. The training 

set was used to employ the random forest method for ranking potential 

predictors based on their predictive importance. The model’s performance 

was then validated on the test set using leave-one-out cross-validation. This 

study utilized convolutional and recurrent neural networks to predict kidney 

cancer outcomes. We used the models to classify adenoma, adenocarcinoma, 

and non-neoplastic whole slide images (WSIs). The evaluation of our models 

was conducted using three distinct test sets. The results showed area under 

the curve scores of 0.97 and 0.99 for distinguishing between cancerous tumors 

and adenomas and 0.96 and 0.99 for differentiating between kidney cancer and 

adenomas, respectively. These findings suggest that our models are not only 

generalizable but also hold significant potential to integrate and deploy into 

realistic pathological diagnostic workflows of kidney cancer. 

 

KEYWORDS: Convolution Neural Network, Recurrent Neural Network, 

Annotations, Augmentations. 
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1.0 INTRODUCTION 
Kidney disease has affected more than 10% of people worldwide, killing an 

immense number of people reliably, and innumerable people go through 

dialysis to stay aware of their lives [1]. Most patients also suffer from fever, 

erupting, and kidney sufferings, so this disease unfavorably influence the 

patient’s physiology. The objective of therapy is to differentiate minimal 

cystic renal cell carcinoma from renal injuries, which affects an array of 

potential treatment plans for patients [2]. Hence, creating a reliable and 

efficient approach for detecting renal alterations is crucial for patient 

management. In the medical field, diagnoses of kidney diseases often 

employ X-rays, CT scans, and B-ultrasounds. CT scans target a specific 

body area to obtain a cross-sectional or tomographic image of the area 

under scrutiny. This method can deliver accurate, three-dimensional data 

of the examined body part, making organs, structures, and injuries easily 

identifiable. It’s ability to be layered is a significant advantage that offers 

the possibility to reveal more complex information on post-examination [3]. 

The idea of kidney cancerous tumor prediction employing deep learning 

techniques was initially proposed by Dong [4]. The authors proposed a 

non-invasive layer-by-layer planning computation to upgrade the 

significant development in light of the robust AI network. Profound 

learning estimations have, furthermore, been extensively used in clinical 

settings. Tune et al. [5] used the piece fleecy C-infers estimation and the 

better Grow Cut computation to section kidney pictures, and the 

customarily delivered seed names raised the division efficiency. Xiang et 

al. [6] used cortical models and nonuniform advisers to depict the kidney 

structure in CT pictures. Xiong et al. [7] implemented a disease division 

system considering flexible distributed level sets, which truly isolated 

kidney malignant growths in ultrasound pictures. Gao [8] united the level 

set into picture division to deal with images with unbalanced faint 

characteristics and achieved extraordinary division results. Hu and his 

colleagues [9] carried the goalfollowing instrument into the ordinary 

picture division and achieved incredible division results. These results 

show the critical advantages of using significant learning-based 

instruments and work process structures to help clinical analyzers and 

histopathological characterization, especially concerning extended 

beginning of screening capability and diminishing logical twofold 
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examination. Another area for further improvement is the drawn-out 

course of social occasions, a significant grouping of WSIs with precise pixel-

by-pixel remarks, which makes it difficult to set up a managed learning 

classifier with an alternate plan of pictures. This strategy would require 

critical development in the number of WSIs and taking care of resources. 

Based on data from 45,642 WSIs, Campanella et al. [12] employed this 

technique and obtained terrific results. On a dataset of 45,542 WSIs, 

significant learning has recently been used to perceive WSIs in kidney and 

kidney cancer; however, it is on a restricted scale. Sharma et al. [13] 

endeavored kidney harmful development requests utilizing a [8] WSIs 

dataset. Profound learning has been used in kidney illness to anticipate 

general perseverance [14], recognize centres [15], and plan development 

[7]. In this work, various deep learning models have been applied to 

portray kidney and kidney cancer-threatening development to assist 

cautious specialists’ standard histology discoveries. We combined two 

datasets of kidney and kidney growth WSIs, each containing 4,238 and 

4,128 WSIs, respectively [16]. This study shows that pre-trained models 

achieved better exactness and approval exactness. The MobileNetv2 model 

achieves close to 100% exactness and 96% precision. VGG16 and 

InceptionV3 gave 98% and 97% exactness individually and accomplished a 

precision of 96% and 97% separately. ResNet50 gave somewhat less 

exactness and approval precision, which are 98.8% and 95% apiece. The 

proposed CNN model got 98% exactness and 97% approval precision. The 

pre-prepared and custom CNN models gave higher exactness and 

approval exactness than the past investigations. 

2.0 MANUSCRIPT PREPARATION 
The dataset employed in this work has been gathered from various reliable 

opensource destinations and afterward consolidated to make an extensive 

dataset. The dataset comprises CT pictures of kidney disease positive 

patients and typical patients. In the applied CNN model, three Conv2D 

layers, three MaxPooling2D layers, one smoothed layer, two thick layers, 

and a redressed direct unit enactment capability have been incorporated. 

The enactment capability utilized for the last thick layer was SoftMax. 

VGG16, MobileNetV2, InceptionV3, and ResNet50 were utilized for 

preprepared models, with minor changes in the last layers and a head 

model obtained from the essential model. Normal pooling, leveling, thick, 
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and dropout are the adaptable last layers. The CNN model is appropriate 

for highlight extraction since it removes qualities from provided pictures 

and learns and recognizes pictures in light of these elements. The intricacy 

of the learned attributes develops with each layer. 

 

2.1  Materials and Tools 

Python libraries are utilized to make AI, information science, information 

perception, picture and information control, and numerous applications. 

Given Python’s broad library access, profound learning-based issues are 

especially effective with Python programming. Google Colab was utilized 

to deal with the vast datasets and prepare the model. 

 

2.2  Dataset Description 

The dataset utilized in this study consists of kidney CT pictures of 2,212 

images [16]. The dataset has four classes, which are partitioned into an 8:1:1 

ratio. The CT images of a Kidney Cancer patient and a normal patient are 

shown in Figure 1. 

 
Figure 1: Sample CT images of the employed dataset 

 

Next, the training images was fed traditional preprocessing techniques 

before fitting into the applied deep learning models, which included 

bringing in pictures of a particular size, separating the dataset, and using 

information expansion methodology. The precision was further developed 

once the model was fitted and hyperparameters were tweaked, employing 

the validation subset of images. 

 

2.3  System Architecture 

There are three channels in the input layer, and the info shape is 224×224. 

The channel size is 32 with cushioning, the portion size is 3, and the 
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enactment capability is ReLU in the principal layer of the proposed 

engineering. The main max- pooling layer follows, which has a pool size of 

2 and steps of 1. The following layer is a level layer that joins each of the 

pooled highlights into one segment. Two thick layers were created 

eventually. The initiation capability for the primary layer is ReLU, though 

the enactment capability for the most un-thick layer is SoftMax. Figure 2 

illustrates the architecture of the proposed CNN model. 

 
Figure 2: CNN System architecture 

 

2.3.1  Convolutional Layer 

The convolutional layer is the essential layer of the CNN. On CNN, it is the 

center structure block. Most of the calculations happens in this layer. Input 

information, a channel, and an included application are expected for this 

layer. In this layer, the information pictures have gone through a channel. 

The result of similar channels gets the capability map from the 

convolutional layer. In picture arrangement errands, at least one 2D lattices 

are viewed as the contribution to the convolutional layer and different 2D 

frameworks are started as the result. Information and result network 

numbers might be isolated [17]. The activations of the convolutional layer 

can be computed by using the following equation: 

 

𝐶𝑖𝑗 = 𝜃(∑ 𝑊𝑛1𝑠1𝑃𝑛𝑡+1−𝑡
𝑚
𝑛=1 + 𝑏𝑖)       (1) 

 

where Cij represents the output of the convention layer for the ith feature 

map of the jth band, m is the filter scale, Wn, i is the weight vector for the nth 

band of the ith filter, bi denotes the bias for the ith feature map, and Θ is the 

activation function. 

 

 



           Asian Journal of Medical Technology (AJMedTech) 
 

 
                                e-ISSN: 2682-9177 Vol. 4 No. 1 (2024)        62 

2.3.2  Pooling Layer 

The pooling layer is another fundamental structure block of CNN. In 

CNN’s layers, the two most normal pooling frameworks are max pooling 

and normal pooling. The pooling layer eliminates the repetitive elements 

from the picture and makes the picture all around informed. While 

utilizing max pooling, the layer takes the limit of a locale from the channel’s 

ongoing perspective each time and assists with the main elements of the 

picture. The normal pooling layer implies the worth of the ongoing 

perspective each time. A pooling layer is fundamental for reducing the 

quantity of element guides and organization boundaries, and a dropout 

layer forestalls overfitting. The activation of max pooling can be computed 

as: 

𝑃𝑖𝑗 = 𝑚𝑎𝑥𝑘=1
𝑡 (ℎ𝑖,(𝑗−1)(𝑙 + 𝑔))                   (2) 

 

In (2), Pij is determined by the ith function map and the jth band of the pooling 

layer. The pooling scale, represented by t, refers to the total number of 

bands that are pooled together. Additionally, the subsampling factor, 

symbolized by l , plays a crucial role in this process 

 

2.3.3  Flattened Layer 

After a grouping of convolutional and pooling procedure on the highlights 

portrayal of the pictures, the Straightened layer is utilized in the result 

pictures into a solitary long consistent direct exhibit or a vector. The most 

common way of changing over all the resultant 2D exhibits into a vector is 

called Leveling. A smoothed layer is ready for the following connected 

layer of picture grouping by changing over it into a one-layered cluster. 

 

2.3.4 Fully Connected Layer 

There are supports of completely associated layers after convolution and 

pooling layers in the CNN. CNN exceptionally relies upon completely 

associated layers. In PC vision picture acknowledgment and 

characterization, completely associated layers have been perceived as 

exceptionally valuable. The completely associated layer’s bits of feedback 

function as results of the last pooling or convolutional layers, that are 

leveled and afterward kept in the completely associated layers. For the 

highest point of these learned elements, completely associated layers 

function as a categorizer. As a completely associated layer, the ReLU 
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initiation capability is generally utilized. 

 

2.4  Pretrained Models 

In this work, three CNN-based pre-prepared models were utilized, i.e., 

VGG16, MobileNetv2, and InceptionV3. The CT pictures are the initial step, 

and the stacking of a pre-prepared model is the second. Three preprepared 

models are stacked in the subsequent segment. The stacked pre-prepared 

models were changed involving the accompanying layers in the third part. 

Finally, the outcome will be introduced as Kidney Sickness contaminated 

and typical patients in the result area. The convolutional brain network 

Inceptionv3 has a profundity of 50 layers. With the ImageNet loads, the 

preprepared form of Inceptionv3 can sort up to 1,000 items. The ResNet50 

model was additionally prepared utilizing the ImageNet dataset [19]. 

MobileNetV2 builds the state-of-the- art execution of adaptable models 

over a scope of model sizes on various tasks and seat stamps. In each line, 

MobileNetV2 works as a progression of n rehashing layers [20]. A basic 

portion can successfully remove the qualities from CT pictures [18]. VGG16 

was utilized in this review and a fitting layer was added for the end 

product. 

3.0 Results And Analysis 
To conclude, five models had been trained using a trained generator and a 

validation generator. To train this model, a training and validation dataset 

was used. Train the custom CNN model and get 98% accuracy and 97% 

validation accuracy in the final epoch. The total number of epochs was 10. 

The model achieved satisfactory accuracy from the beginning. In the first 

epoch, it obtained 86% accuracy and 95% validation accuracy. The pre-

trained model VGG16 has 98% accuracy and 96% validation accuracy in the 

10th epoch; the training loss and validation loss were 3% and 8%, 

respectively. 
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Table 1: Performance Metrics of The Applied Models 

 

 

 

 

 

 

 

 

 

 

MobileNetV2 secured the highest accuracy among the applied models, 

which is 99% accuracy and 96% validation accuracy. InceptionV3 has 97% 

accuracy and 97% validation accuracy. In InceptionV3, 32% training loss 

and 20% validation loss were observed. The histories of accuracy, 

validation accuracy, loss, and validation loss of the five models are given 

in Table 1. 

Throughout this research, transfer learning was also used with four pre-

trained models. The pre-trained models made much smoother predictions. 

In the VGG16 model, the accuracy was 98% and the validation accuracy 

was 96%. In the first epoch of the model, it obtained 92% accuracy and 95% 

validation accuracy. It gradually increased and obtained 98% accuracy in 

the 10th epoch. For validation accuracy, it secured 95% in the first epoch, 

increased to 99% at the 6th epoch, and gradually decreased to 96% at the 

10th epoch. The model provided 3% training loss and 8% validation loss. 

In the first epoch, it provided a 20% training loss, which gradually 

decreased to 3% in the 10th epoch. For the validation loss, it provided 8% 

in the first epoch and also in the 10th epoch. In the middle epochs, it 

gradually decreased. MobileNetV2 provided the highest accuracy among 

these pre-trained models. It obtained 99% accuracy and 96% validation 

accuracy. Compared to the VGG16 model’s accuracy, it got higher accuracy 

in the first epoch, which is 94%. Although their validation accuracy for the 

first epoch was the same, which is 95% for both models, MobileNetV2 has 

a 14% training loss and a 62% validation loss. In this case, MobileNetV2 did 

not provide a good validation loss. MobileNetV2’s validation loss is 62%, 

which is the highest validation loss among these four models. The 

confusion matrix of the custom CNN model is shown in Figure 3. 

Model 
Accuracy 

(%) 
Validation Acc (%) Loss (%) 

Validation 

Loss (%) 

Custom CNN 98 97 3 8 

MobileNetV2 99 96 14 62 

VGG16 98 96 3 8 

ResNet50 93 95 20 24 

InceptionV3 97 97 32 20 
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Figure 3: Confusion Matrix of the applied custom CNN model 

Predictions, data, and features are the three major terms in error 

analysis. Error analysis based on prediction can be executed using a 

confusion matrix, where the percentage can be divided into false positives, 

false negatives, true positives, and true negatives. The size and nature of 

the data are also significant for error analysis. The precision of a dataset is 

defined as the ratio of accurate predictions to provide the total predictions. 

It can provide us with a brief overview of a model’s training quality and 

potential performance. It does not, however, offer thorough instructions on 

how to apply it to the issue. When the expense of false positives is 

substantial, precision—also referred to as PPV—is an appropriate metric to 

employ. When the cost of false negatives is high, the optimal model is 

selected using the recall model metric. When the cost of false negatives is 

significant, recall becomes valuable. When attempting to assess how well 

recall and accuracy are balanced, an F1-score is required. It is a broad 

indicator of the correctness of the model. It integrates recollection and 

accuracy. Low false positives and false negatives are the keys to a high F1-

score. During the model evaluation, the test dataset was utilized. This test 

dataset was created during the dataset split and was reserved solely for 

testing purposes. This study calculated the precision, recall, and F1-score 

for all the models utilizing the test dataset. Table 2 demonstrates the 

precision, recall, and F1-score of the applied VGG16, InceptionV3, 

MobileNetV2, ResNet50, and Custom CNN models for the proposed 

kidney cancerous tumor prediction system. It shows that VGG16 and 

InceptionV3 have the highest F1-score among all these models. 

 

 



           Asian Journal of Medical Technology (AJMedTech) 
 

 
                                e-ISSN: 2682-9177 Vol. 4 No. 1 (2024)        66 

Table 2: Precision, Recall And F1 Score Of The Applied Models 

Model State Precision Recall F1 

Custom CNN kidney 

cancer 

0.89 0.97 0.93 

Custom CNN Normal 0.97 0.88 0.93 

VGG16 kidney 

cancer 

0.95 0.92 0.94 

VGG16 Normal 0.92 0.96 0.94 

InceptionV3 kidney 

cancer 

0.96 0.89 0.93 

InceptionV3 Normal 0.9 0.96 0.93 

MobileNetV2 kidney 

cancer 

0.97 0.88 0.92 

MobileNetV2 Normal 0.89 0.97 0.93 

ResNet50 kidney 

cancer 

0.87 0.98 0.92 

ResNet50 Normal 0.98 0.86 0.91 

 

In this study, testing was conducted by feeding real-time CT images to 

the trained model. Once training had finished, the model was saved, and 

separate HDF5 files were generated for each of the four different models. 

These four files were used to make the predictions. Each model was fed an 

individual CT image as input, and following the input, the model predicted 

whether the image indicated kidney cancer or a normal CT image. Figure 4 

illustrates the prediction result, indicating whether it belonged to a kidney 

cancer patient or a normal individual. 

 

In Figure 4, a CT image affected by a kidney cyst was used as an input 

to the model. The model identified the CT image as a kidney cancer, which 

was predicted precisely. 
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Figure 4: Sample CT image of the Kidney cancer affected result 

Following the test, another image was fed as input, and the model correctly 

predicted it as a tumor-affected CT image. Figure 5 depicts the model’s 

predictions of a tumor-affected CT image. 

 

Figure 5: Sample CT image of the Normal result 

Table 3 portrays that all the models had an excellent result. Pre-trained 

models demonstrated higher accuracy compared to the reference models. 

Comparatively inceptionV3, VGG16 and the custom CNN model had 

achieved the highest accuracy than the previously studied models. Mobile 

netV2 had attained the highest accuracy at 99%. VGG16 and InceptionV3 

had achieved the level of accuracy respectively 98% & 97%. Which 

surpassed the accuracies reported in the referenced article (95.9% for 

VGG16 and 93% for inceptionV3). ResNet50 had achieved excellent 

accuracy level of 93.8%, Surpassing the performance in previous studies 

where it achieved 88% [14] and 92.6% [13] accuracy. 
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Table 3 Comparison Of This Work With Other Similar Systems 

Reference Model Name Acc (%) In this study (%) 

[10] VGG16 95.9 98 

[12] MobileNetV2 97.4 99 

[11] InceptionV3 93 97 

[14] ResNet50 88 93.8 

[13] ResNet50 92.6 93.8 

[4] Custom CNN 93 98 

[5] Custom CNN 94.5 98 

 

4.0 CONCL U S ION  
This research proposes a deep learning technique for CT image-based 

kidney cancer diagnosis. We employed four pre-trained models and a 

bespoke CNN model to distinguish between benign and malignant kidney 

cancers. We demonstrated on a dataset of 2212 CT scans that our models 

outperformed the earlier techniques. Additionally, we provide some 

examples of confusion matrices and forecasts. Furthermore, we have 

identified the difficulties and consequences of our models for future 

research and clinical practice. We have suggested specific methods to 

enhance the data quality, incorporate more clinical details, and to expand 

the application of our models to different cancer types. Our research has 

attained excellent dependability by utilizing many popular deep-learning 

models and it has the potential to be the foundation for a system that aids 

physicians in using CT scans to identify kidney cancer. Future research 

could improve this system using this method, which might be enhanced by 

creating a web application and utilizing a larger dataset. This would raise 

the system’s efficacy, accuracy, and outcomes. With further research and 

development kidney cancer will be diagnosed and identified at the earlier 

stage. Thus, the patient will get the essential therapy regarding the 

condition of the kidney cancer. It will help them to cure the cancer earlier 

and lead them to the sound life. 
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