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ABSTRACT: This study examines electromyography (EMG) signal pattern 

recognition to elucidate the relationship between EMG signals, hand 

movement, and biceps muscle force. The exercises were performed at angles 

of 45°, 90°, and 120° relative to the elbow joint. The research uses Matlab for 

EMG signal optimal features parameters to focus on hand movements under 

varying loads (2kg, 4kg, and 6kg). Data acquisition involved tasks of lifting 

and holding, with EMG signals analyzed across different phases of muscle 

activation.   Results indicate a positive correlation between EMG signal 

amplitudes and load and motion angles, revealing distinct muscle activation 

phases during lifting, holding, and releasing. The results show that the 

normalized average peak force at different loading levels increases if the load 

increases. If the load decreases, the amplitude decreases for trained and 

untrained subjects. The findings underscore the potential for these insights to 

inform the development of flexible prosthetic arms and assistive technologies. 
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1.0 INTRODUCTION 

An individual's capacity to do daily tasks can be significantly impacted 
by the partial or total loss of an upper limb, a vital human body 
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component [1]. The hand, forearm, and arm are the three parts that 
make up the human upper limb. The relationship between the 
musculoskeletal system, the neurological system, and its environment 
must be coordinated for each portion to move. Coordination of the 
shoulder, elbow, wrist, and finger joints is necessary to carry out 
various daily tasks involving a wide range of motions with many 
degrees of freedom. Even though these synchronized motions are 
repetitive, they might be useful for carrying out difficult tasks. All these 
typical hand control capabilities should be closely matched to an 
artificial hand, allowing the user to accomplish daily tasks more 
efficiently and customized. Because the coordinated control of the 
human hand is intricate, it is very challenging to precisely mimic it in 
a prosthetic hand [2]. 

A typical prosthetic hand involves three main connected parts: an 
input signal acquisition unit, a processing and control unit and an end 
effector. Nowadays, almost all high-performing artificial hands (or 
prostheses) use surface electromyography signals (sEMG or 
myosignals) to control their end effectors. Surface electromyography 
records the muscle movements electrically from the surface of muscle 
cells when they are electrically or neurologically activated [1]. 
Electromyography (EMG) is a technique focused on the development, 
recording, and analysis of myoelectric signals, which arise from 
physiological changes in muscle fibre membranes [1]-[3]. During 
muscle contractions, these electrical activities generate EMG signals [4]. 
The signals are produced by ion exchanges across muscle fibre 
membranes, which precede muscle force generation. This process 
involves the nervous system controlling muscle activity during 
contraction and relaxation [4]. When an action potential, initiated in the 
brain, travels along nerve fibres through the spinal cord to skeletal 
muscles, it stimulates muscle contractions that move human limbs [5].  

The recorded EMG signal represents the superimposed electrical 
potentials from numerous muscle fibres, forming a time-varying 
signal. Each motor unit action potential (MUAP) contributes to the 
overall EMG signal, reflecting muscle responses to neural stimulation 
[2], [6]. EMG signals are typically modelled as a filtered impulse 
process, with MUAPs acting as filters. The raw surface EMG signal is 
unprocessed and comprises superimposed MUAPs. According to 
Yacoub and Raoof [7], EMG signals have a frequency range of 0 to 2000 
Hz, with dominant energy concentrated between 20 and 500 Hz. The 
signal amplitude ranges from 0 to 10mV, and noise is a common issue 
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[1], [6].  

Recording EMG signals involves electrodes, and several external 
factors, including tissue characteristics, physiological cross-talk, 
geometry changes between muscle and electrode, and electrode 
quality, can influence the signals. Proper circuit design and skin 
preparation can mitigate some of these issues [2]. However, various 
types of noise, including electrical noise from equipment and ambient 
electromagnetic radiation, remain challenging [8]. Modern technology, 
including electronics and differential amplification advancements, has 
improved the ability to measure surface EMG signals with low noise 
and high fidelity. Differential amplifiers with high common mode 
rejection rates and high input impedance are typically used, along with 
bandpass filters ranging from 10-20 Hz for high-pass to 500-1000 Hz 
for low-pass filtering [9].  

EMG has been used extensively in performance analysis for exercise 
and rehabilitation, helping to evaluate muscle recruitment, activity 
levels, and fatigue through amplitude and frequency analysis of the 
signals [10]-[12]. These signals provide critical insights into 
neuromuscular activities and are vital in clinical and engineering 
applications, including sports training, gait analysis, and physical 
therapy [2], [13]. The raw EMG signal is complex and influenced by 
physiological, anatomical, and instrumentation factors, varying from 
person to person [14]. Noise from tissue characteristics, cross-talk, and 
surrounding environments can distort the signal [1]. Effective EMG 
applications, such as controlling prostheses and assistive devices, 
leverage the direct correlation between EMG signal amplitude and 
muscle force [15]. Analyzing EMG signals helps understand muscle 
force utilization, execution of movements, and muscle rest dynamics 
[16]. Accurate EMG signal recording requires careful electrode 
selection and placement. Invasive methods using needle electrodes 
provide precise and high-resolution measurements of electrical 
activity, particularly for deep muscles [17]. Although more intrusive, 
these methods offer bandwidth and specific muscle targeting 
advantages, which are essential for detailed neuromuscular studies [1], 
[19].  

In this paper, electromyography (EMG) technology aims to collect 
EMG data based on various hand movement activities to analyze the 
electrical signal activity across different angles of movement. By 
examining these signals, the research seeks to understand the 
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relationship between EMG signal amplitude and the weight involved 
in these movements, providing insights into how muscle activation 
varies with different loads and positions.  

The paper is structured as follows. In the Material and Methods 
section, the tools and methods utilized for EMG data acquisition and 
processing are detailed and explained. The Results & Discussion 
section highlights the differences observed in EMG signal 
characteristics based on electrode placement, arm movements, and 
applied loads, discussing the implications of these findings. Lastly, the 
Conclusion section summarizes the key findings regarding electrode 
placement's impact on EMG signal quality and its relevance for 
applications in prosthetic control and rehabilitation technologies. 

 

2.0 MATERIAL AND METHODS 

This section discusses the process of the study, starting with choosing 
the samples for the experiment and ending with the analysis of the 
results of the produced signals. 

Step-1: 

The criteria for selecting suitable participants for this study are outlined 
in Table I. Factors such as the amount of fat in the biceps muscle, and 
the condition of the upper limb are also considered. Participants with 
excessive fat are excluded, as it can introduce noise into the 
electromyography signal. Fifteen healthy subjects were selected to 
minimize the risk of injury.  

Table I: Criteria for selecting a suitable subject for the experiment 

Criteria Specification 

Number of Subjects 15 male right-handed individuals 

Age (years old) 24.00 ± 0.93 

Weight (kg) 70.60 ± 12.89 

Height (m) 1.67 ± 0.01 

Health Condition Normal and healthy 

BMI 25.25 ± 3.79 

Participation is voluntary, and each subject is required to sign a 
consent form. This consent form ensures that participants volunteer 



SIGNAL ANALYSIS BASED ON HAND ACTIVITY: IMPLICATIONS FOR PROSTHETIC DEVELOPMENT  

 

 
 e-ISSN: 2682-9177   Vol. 4    No. 2    (2024)                         21 

 

willingly, fully understand the experiment, and know the potential 
consequences. This precautionary measure safeguards the participants 
and the study in case of post-experiment issues. 

Step-2: 

In the second step, the authors ensure the consistency and validity of 
the raw EMG data collection, and standardized experimental 
procedures are followed, as illustrated in Figure 5. The experiments are 
conducted in a quiet room to minimize noise interference and enhance 
signal quality. Participants lean against a wall to maintain a straight 
and upright posture, preventing the use of their body for weight 
support. Data is recorded continuously throughout the experiment. 
Vernier EKG Sensor, Flex Sensor, Electrode and Dubell shown in 
Figures 1,2,3 and 4 were used in this experiment. 

 
Figure 1: Vernier EKG sensor 

 

 
Figure 2: Flex sensor 
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Figure 3: Surface Electrodes 

 
Figure 4:  Dumbell of different Weight 

 

 
Figure 5:  The flowchart of the experiment 
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Figure 6 shows an overview of the EMG signal pattern recognition. 
First, we acquire EMG data using experimental procedures and then 
process the data using feature extraction. Lastly, we use the Matlab app 
to see the expected outcome. 

Figure 6: An overview of EMG Signal Pattern Recognition 

Step-3: 

In this step, participants are instructed to lift their hands freely without 
any load and then with dumbbell loads of 2kg, 4kg, and 6kg. Each task 
is repeated ten times under observer supervision. Figure 7(a) shows the 
different positions of the experiment from start to end. The movement 
of the participants during the experiment is shown in Figure 7(b). The 
6kg load is selected as the maximum load for an average, healthy 
individual, applicable for males, using a single hand. The right hand is 
used in this experiment to minimize interference from heartbeat signals 
(electrocardiogram, ECG). 
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Figure 7: Steps during the experiment (a) different hand position (b) 

Experimental setup for the subject during the experiment. 

Step-4: 

In the last step, the data acquisition phase, EMG signals are measured 
according to several tasks defined in the experimental procedures. The 
measured EMG signals undergo a feature extraction process in the data 
processing phase. Achieving the first objective involves completing 
both data acquisition and data processing. Data classification and 
validation phases are necessary for the second and third objectives. In 
the data classification phase, the extracted features from the EMG 
signal are used for neural network training. Post-training, the EMG 
signals are classified based on force (using load) and motion (in 
degrees). The developed EMG signal pattern recognition system is 
tested on new, randomly selected subjects to assess its performance in 
the data validation phase. 

 

3.0 RESULTS AND DISCUSSION 

This research collects EMG data while participants lift a dumbbell 
weighing 2kg, 4kg, and 6kg at different arm motion angles (45°, 90°, 

(a) 

(b) 
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and 120°). Analyzing these EMG signal characteristics reveals the 
fundamental relationship between arm motion angles, the loads, and 
the changes in EMG signal amplitudes. This analysis comprehensively 
explains the interaction between EMG signals, muscle force, and arm 
motion.  

The graphs presented in Figures 9.1, 9.2 and 9.3 depict data from a 
single subject, categorized into three phases: phase I (lifting), phase II 
(holding), and phase III (releasing). In phase I (lifting stage), the biceps 
muscle expends increased energy or force to lift the load from 0 to the 
target angle (45°), evidenced by a rapid increase in EMG signal 
amplitude. The peak amplitude at the start of the lifting stage indicates 
the maximum muscle effort required for initiating the lift. During 
phase II (holding stage), when the subject maintains the load at 45°, the 
EMG signal amplitude stabilizes, reflecting consistent muscle 
activation to sustain the load. However, the amplitude gradually 
decreases over time, illustrating the non-stationary nature of the EMG 
signal, wherein signal frequency changes over time. In phase III 
(releasing stage), the EMG signal amplitude decreases rapidly as the 
subject releases the load, reaching zero force at 0°. These findings 
underscore the relationship between EMG signal amplitude variations, 
muscle exertion, and arm movement. 

TABLE II. Maximum EMG Signal Amplitude at Different Load 

 

 

 

 

Further analysis aimed at understanding the characteristics of the 
EMG signal focused on its relationship with muscle force under 
varying loads. Additionally, Table II. and Figure 8. present the 
maximum amplitude of the EMG signal across different loads. 
Maximum amplitude was chosen as a feature because it represents the 
peak energy or force exerted by the biceps muscle during the 
experiment. This result demonstrates that the biceps muscle expends 
greater energy or force to lift the load as the load increases, resulting in 
higher EMG signal amplitudes. Moreover, the tested data shows a clear 
and obvious comparison between the intensity of the load and how 
widely spread the arm is, which is represented by the arm motion angle 

Load (kg)  Maximum EMG signal 

amplitude (mV)  

2  120  

4  220  

6  240  
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in degree. 

 

Figure 8: Max EMG signal to load relation 

The comparison between the weight of the subject arm and the force 
exerted by the biceps muscle is illustrated in Table III. This insight, for 
instance, shows that a higher arm weight does not necessarily mean 
higher force exerted by the biceps muscle. 

TABLE III. Sample comparison of the subject physical and force exerted by 

biceps muscle 

Subject, N  Weight of arm,  

𝑊𝑎𝑟𝑚(kg)  

The force exerted by the 

biceps muscle,  

𝐹𝑏𝑖𝑐𝑒𝑝𝑠 𝑚𝑢𝑠𝑐𝑙𝑒(N) x102  

1  1.08  3.58  

2  1.33  3.78  

3  3.52  3.27  

4  2.13  4.09  

5  1.94  3.05  

6  2.10  3.42 
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Figure 9.1: Comparison of the EMG Signal Amplitude for 45 of Elbow Angle 

at Different Load: (a) 2kg, (b) 4kg and (c) 6kg 

 

Figure 9.2: The graphs presented in Figure 9.2 depict data from a single 

subject, categorized into three phases: phase I (lifting), phase II (holding), 

and phase III (releasing). In phase I (lifting stage), the biceps muscle expends 

increased energy or force to lift 
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Figure 9.3: Comparison of the EMG Signal Amplitude for 120 of Elbow 

Angle at Different Load: (a) 2kg, (b) 4kg and (c) 6kg 

The EMG data used in this study were obtained while hand load-lifting 

dumbbell loads of 2, 4, and 6 kg at various arm motion angles. Figures 

9.1, 9.2, and 9.3 display the properties of the EMG signal for varying 

arm motion degree values (angle), which are 45, 90, and 120, 

respectively. The essential relationship between changes in arm motion 

(angle) and loads and changes in EMG signal amplitudes are revealed 

by studying the signal characteristics. This feature analysis explains the 

link between the EMG signal, muscle force, and arm motion (angle). 

So, Figures 9.1, 9.2 and 9.3 show that if the load increases, then the 

amplitude in Mili-volts also increases and if the load decreases, the 

amplitude also decreases. 
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Figure 10.1: Comparative plot of normalized average peak force at different 

levels of MVCs for trained and untrained subjects. 

 

Figure 10.2: Normalized average forces for subjects at different levels of 

MVCs 

Figure 10.1 illustrates how the strength of the biceps brachii was 
found to be 13.41% greater in trained subjects than in untrained 
subjects. As the amount of Maximal Voluntary Contraction (MVC) 
increased, the muscular force increased for both groups. The muscle 
force rose by 32.38% and 30.04% in trained participants. However, as 
the degree of MVC increased from L1 to L2 and L2 to L3, respectively, 
the muscular force increased by 30.97% and 22.3% for the untrained 
subjects, as shown in Figure 10.2. 

 



Asian Journal of Medical Technology (AJMedTech) 
 

 
 e-ISSN: 2682-9177   Vol. 4    No. 2    (2024)                         30 

 

4.0 CONCLUSION AND FUTURE WORK 

This study explored EMG signal pattern recognition and investigated 
its correlation with hand motion and force exertion by the biceps 
muscle. A Python model was developed for EMG signal pattern 
recognition, and its performance was evaluated through data 
acquisition, processing, and classification. The relationship between 
hand motion and biceps muscle force was analyzed, revealing a strong 
association. These findings offer potential applications for enhancing 
the flexibility and functionality of prosthetic arms. Additionally, the 
study discusses how changes in hand movements correspond to EMG 
signal variations and changes in biceps muscle force. 

Future research should focus on identifying optimal feature 
parameters for input into the EMG pattern classifier. Features are 
extracted from individual time segments to form a comprehensive 
feature set representing the myoelectric pattern. Determining the 
number of time segments is critical for defining the quantity of feature 
parameters. Investigating the impact of segment length on 
classification accuracy is essential to strike a balance between 
preserving class information and minimizing feature estimation errors. 
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