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ABSTRACT: Computational fluid dynamics is utilized to understand the 

hemodynamics of aneurysms. In this study, two-phase blood flow was 

numerically simulated by a discrete phase model using the Lagrangian 

approach, with the blood cells representing the particulate phase and the 

plasma representing the continuous phase. Three patient-specific aneurysm 

geometries, namely, two saccular aneurysms located in the bifurcation of the 

basilar artery and one fusiform aneurysm located at the bifurcation of the 

common carotid artery and of the external carotid artery, were investigated. 

Wall shear stress (WSS), oscillatory shear index (OSI), and relative residence 

time (RRT) were determined from the simulation. The two-phase blood flow 

simulation revealed a high WSS (>3.0 Pa), a high OSI (>0.2), and a long RRT 

(>8) in the medium- and giant-sized saccular aneurysms. By contrast, a low 

OSI, a low WSS, and a short RRT were observed at the aneurysm dome of the 

fusiform aneurysm. However, at the bifurcation point, a high WSS and a long 

RRT with low oscillation were observed.  

 

KEYWORDS: Aneurysm; Two-phase blood; Wall shear stress; Oscillatory shear 
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index; Relative residence time 
 
 

1.0 1.0 INTRODUCTION 

A cerebral aneurysm is characterized by a bulging along the wall of a 
blood vessel in the brain. Such a condition weakens the vessel wall; 
moreover, aneurysms in cerebral arteries demonstrate the risk of 
rupturing or bursting [1], which would cause bleeding in the brain, 
known as hemorrhagic stroke. Understanding the mechanism of brain 
aneurysm rupture has been critical in finding the treatment to avoid 
the possible onset of fatal events [2]. Globally, nearly 500,000 deaths 
each year are caused by cerebral aneurysms [3].  

Gaining an understanding of the biomechanics of blood flow is 
essential. Hemodynamics play a vital role in the formation, growth, 
and rupture of cerebral aneurysms [4]. Hemodynamics refers to the 
hydrodynamics of flow in blood vessels. It relates to the forces at play 
in blood flow. Several hemodynamic parameters are widely used in 
rupture risk analysis, in monitoring aneurysm growth, and in 
identifying atherosclerosis lesions; moreover, these parameters are 
used as indicators when determining the location where aneurysm 
formation would peak [5] [6] [7] [8].  

Over the last two decades, computational fluid dynamic (CFD) 
techniques have been widely used to investigate the initiation, growth, 
and rupture of cerebral aneurysms [9]. Rupture risk prediction has 
been extensively investigated using CFD simulation wherein blood has 
been analyzed using a single-phase flow model, which considers 
hemodynamic parameters, such as wall shear stress (WSS) and 
oscillatory shear index (OSI); relative residence time (RRT) is a 
parameter that has been less investigated [8] [10]. In single-phase blood 
flow models, blood is treated both as a Newtonian and a non-
Newtonian fluid in order to understand the development, growth, and 
rupture of cerebral aneurysms [11] [12]. Blood has also been analyzed 
using a multiphase flow model, wherein red blood cells (RBCs), white 
blood cells (WBCs), and platelets are considered to be suspended in the 
plasma. Additionally, in one study, cell transport, interactions, and low 
WSS distribution in leukocytes were analyzed in four patient-specific 
aneurysm geometries [13]. 

In this study, blood was considered as a two-phase fluid, with 
plasma as the continuous phase and RBCs as the particulate phase. The 
continuous phase was solved using the Naiver–Stokes equation, and 
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the particulate phase was solved using the discrete phase model 
(DPM). This research aims to determine the WSS, OSI, RRT, velocity 
streamlines, and surface velocities in aneurysms by using a two-phase 
blood flow model. 

2.0 METHODS 
2.1 Equations and validation of the DPM 

The ANSYS-Fluent simulation package with DPM was utilized to solve 
the motion of plasma and RBCs using the Lagrangian approach, 
wherein blood trajectories were calculated. The continuous fluid was 
first solved according to the Naiver–Stokes equation, and the 
particulate phase in the plasma was solved using the DPM. The 
individual particles were tracked by calculating the fluid flow field. 
Each particle was analyzed computationally at certain time intervals 
during the fluid phase calculation. The trajectory equation was solved 
through stepwise interactions over discrete time steps. The integration 
of time yielded the velocity of the particle at each point along the 
trajectory. 

In the DPM, the blood cells were considered rigid particles. The 
movement of blood cells is governed by particle motion. The equation 
for particle motion was fundamentally derived from Newton’s laws of 
motion, where the resultant of all the forces ΣF acting on particles’ mass 
m is proportional to the acceleration a of the particles, and each action 
has a reaction that is equal in magnitude but acting in the opposite 
direction. 

Σ𝐹 = 𝑚𝑎 (1) 

The motion of a spherical particle in a fluid is expressed as follows: 

𝑚𝑝

𝜕𝑢𝑝

𝜕𝑡
= 𝑚𝑝 (1 −

𝜌

𝜌𝑝
) 𝑔 + 𝐹𝑝𝑔 + 𝐹𝐷 + 𝐹𝐿 + 𝐹𝑣𝑚 + 𝐹𝐵𝑎𝑠 (2) 

where 𝑚𝑝 is the mass of the particle, 𝑢𝑝 is the instantaneous velocity of 
the particle, g is the body acceleration, 𝐹𝐷 is the drag force, 𝐹𝐿 is the lift 
force generated by the rotation of a particle and shear flow, 𝐹𝑝𝑔 is the 
force that exists in the absence of a particle due to the acceleration of 
the fluid and due to the hydrostatic pressure gradient, 𝐹𝑣𝑚 is the virtual 
mass force that accounts for the work required to change the 
momentum of the surrounding fluid as particles accelerate, and 𝐹𝐵𝑎𝑠 is 
the unsteady drag force or Basset force that accounts for the temporal 
development of the viscous region that affects the velocity of the 
particles. 
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An equal balance between particles’ mass acceleration and the action 
forces was used to determine the movement of each particle in the 
disbanded phase. In this research, we presumed the force as a drug-
related force, whereas all other forces were considered small and 
negligible [14]. The governing equation is as follows: 

 

𝑚𝑝

𝜕𝑢𝑝

𝜕𝑡
= 𝑚𝑝 + (1 −

𝜌

𝜌𝑝
) 𝑔 + 𝐹𝐷 (3) 

where 𝐹𝐷 is the per unit mass drag force and is derived as 

𝐹𝐷 =  
18𝜇

𝜌𝑝𝑑𝑝
2

𝐶𝑑𝑅𝑒𝑝

24
(𝑢 − 𝑢𝑝) (4) 

where u is the fluid velocity, 𝜌 is the fluid density, 𝜌𝑝 is the particle 
density, 𝑑𝑝 is the particle density, 𝐶𝑑 is the drag coefficient, and 𝑅𝑒𝑝 is 
the relative Reynolds number, which is expressed as 

𝑅𝑒𝑝 =
𝜌𝑑𝑝|𝑢−𝑢𝑝|

𝜇
 (5) 

The CFD software uses the empirical approach described by Morsi 
and Alexander [15] to determine the drag coefficient, which is defined 
as follows: 

𝐶𝑑 = 𝜔1 +
𝜔2

𝑅𝑒𝑝
+

𝜔3

𝑅𝑒𝑝
2 (6) 

where 𝜔1, 𝜔2, and 𝜔3 are the constants that are appropriate for the 
spherical particles at different Reynolds numbers. The particle 
trajectory equation is expressed as follows: 

𝜕𝑥𝑖

𝜕𝑡
= 𝑢𝑝.𝑖  (7) 

The particle time is t, and xi is the position coordinate, as described 
by Dhahbi et al. 2012 [14]. The interaction of the injected particle with 
the continuous phase was specified, and 10 continuous phase iterations 
per DPM iteration were defined per the software guidelines [16]. 

To validate the DPM, we performed CFD simulation by 
benchmarking with an experimental study [17], along with the CFD 
results for patient-specific cerebral aneurysms and arterial blockage 
[13] [18] [19]. Also, a numerical validation of the DPM was published 
elsewhere [21]. In the validation study, blood was divided into two 
major components: water and RBCs. Human RBCs, which had a 
density of 1130 kgm−3 and a diameter of 7.5 μm, were considered as 
rigid particles that are suspended in water, which had a density and 
viscosity of 1000 kgm−3 and 0.001 Pa·s, respectively [20] . Two inlet 
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velocities, 0.0757 ms−1 and 0.233 ms−1, were chosen; the fluid flow was 
considered Newtonian with a steady-state flow. As shown by 
theoretical and experimental studies, the reattachment point plays an 
important role in the numerical validation of the DPM. Figure 1 
compares the reattachment points obtained in an experimental work, 
in two computational studies, and in the current computational 
investigation. The validated DPM model was used in this simulation. 

 

Figure 1: Numerical validation of the DPM, wherein the current 

results are compared with previous findings. 

2.2 Patient-specific aneurysm geometries 

Three patient-specific aneurysm geometries were selected to determine 
the rupture risk of cerebral aneurysms. These patient-specific 
aneurysm geometries were segmented and constructed from 3D 
rotational computed tomography angiography (CTA) images to 
generate 3D geometries using the medical research software 
Materialise Mimics 22.0 and 3-Matic 20.0. Data were obtained from the 
Radiology Department, Faculty of Medical and Health Sciences, 
Universiti Putra Malaysia. The segmented aneurysm geometries 
denoted as geometry 1, geometry 2, and geometry 3, are shown in 
Figure 2a, 2b, and 2c, respectively. 

The aneurysm geometries 1 and 3 were saccular aneurysms located 
in the bifurcation of the basilar artery (BA) to the posterior 
communicating arteries. The aneurysm geometry 2 was a fusiform 
aneurysm located at the bifurcation of the common carotid artery 
(CCA) and external carotid artery. However, missing information in 
the CTA images in aneurysm case 3, that is, the outlet 1 artery with 
aneurysm geometry, was reconstructed for further investigation. 



Asian Journal of Medical Technology (AJMedTech) 

 

6 
 

2.3 CFD method 

The Ansys-Fluent 2019 R3 was used for the CFD analysis of the patient-
specific aneurysm geometries. An unstructured tetrahedral mesh with 
a maximum element size of 0.15 mm with a four-layer prism mesh was 
applied after completing the mesh independence test. The meshed 
aneurysm geometry 2 is shown in Figure 2d to 2f. The continuous phase 
was the plasma, which had a density of 1020 kgm−3 and a viscosity of 
0.002 Pa·s. The particulate phase had a mean diameter of 8.2 μm and a 
density of 1100 kgm−3 [17].  

 

 

Figure 2: Patient-specific aneurysm geometries. (a) Geometry 1 

(height (h) = 6 mm; width (w) = 5.8 mm); (b) geometry 2 (h = 6.8 mm; 

w = 6.5 mm); and (c) geometry 3 (h = 27 mm; w = 16 mm). Meshed 

aneurysm geometry 1: (d) full geometry of the unstructured 

tetrahedral mesh, (e) aneurysm body mesh, and (f) inlet meshing with 

a four-layer prism mesh. 

The blood flow in the aneurysm was modelled to be incompressible. A 
pressure-based solver was selected for the simulation. The Semi-
Implicit Method for Pressure Linked Equation (SIMPLE) scheme was 
used for pressure–velocity coupling. A 1s pulsatile inlet velocity profile 
was defined and written as the user-defined function in the c 
programming language [22]. Figure 3a presents the inlet pulsatile 
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velocity profile. Zero pressure was applied in the outlet boundary 
condition. Ten cardiac cycle simulations were performed for each 
aneurysm geometry with a time-step of 0.005 s, as shown in Figure 3b. 
Each time-step convergence achieved a minimum residual of 10−4. 

 

 

 

Figure 3: Inlet pulsatile velocity profile. (a) 1s inlet pulsatile velocity 

with mean Reynolds number. (b) Inlet flow velocity in 10 cardiac 

cycles. 

The Reynolds number was based on the parent artery’s mean inlet 
diameter and was calculated using the following equation: 
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𝑅𝑒𝑚 =
𝜌𝐷𝑚𝑒𝑎𝑛𝑉

𝜇
 (8) 

where ρ is the density of the fluid, 𝐷𝑚𝑒𝑎𝑛 is the mean diameter of the 
parent blood vessels inlet, V is the velocity of the fluid, and μ is the fluid 
viscosity. The mean Reynolds numbers Rem of the three aneurysm 
geometries ranged from 490 to 1370. The data were based on the mean 
Reynolds number obtained in the simulation that involved 10 cardiac 
cycles. 

 

The hemodynamic parameters obtained from the simulation were 
WSS (calculated as the ratio of the time-averaged WSS of the last 
cardiac cycle to the average WSS of the parent artery), OSI (a non-
dimensional parameter calculated based on the directional changes in 
WSS), and RRT (residence time of blood cells near the artery of the 
aneurysm wall). To analyze the velocity distribution inside the 
aneurysm, we retrieved the velocity streamline and surface velocity 
data for all aneurysm geometries. 

3.0 RESULTS 

The two-phase blood was solved with the DPM and completed in 10 
cardiac cycles. After the simulation for 10 cardiac cycles, a total of 
145,865 RBCs for aneurysm geometry 1, 160,245 RBCs for aneurysm 
geometry 2, and 185,715 RBCs aneurysm geometry 3 were tracked.  

Large aneurysms possibly have a higher risk of rupture compared 
with the small ones [23]. According to Lee et al. 2015 [24], aneurysm 
sizes are classified based on the maximum dimension of aneurysm 
geometries. The size categories are as follows: small (0 mm to 4.9 mm), 
medium (5 mm to 9.9 mm), large (10 mm to 24 mm), and giant (>25 
mm). On this basis, the aneurysm geometries 1 and 2 were classified as 
medium-sized aneurysms, whereas geometry 3 was classified as a giant 
aneurysm. The height and width of the aneurysm geometries are 
presented in Figure 3. WSS, OSI, RRT, velocity streamlines, and surface 
velocities for the last cardiac cycle for geometries 1, 2, and 3 are plotted 
in Figures 4, 5, and 6, respectively. 

WSS is an essential hemodynamic parameter and is categorized as 
either high or low. A low WSS is characterized by <1 Pa, whereas a high 
WSS is characterized by >3 Pa [23]. In the two-phase blood flow 
simulation, the high WSS values were observed in aneurysm 
geometries 1 and 3, and a low WSS was observed in the aneurysm 
dome of geometry 2, as shown in Figures 4a, 6a, and 5a, respectively. A 
high WSS was observed at the bifurcation in aneurysm 2.  
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Figure 4: Geometry 1: Medium-sized saccular aneurysm in the BA. (a) 

WSS. (b) OSI. (c) RRT. (d) Velocity streamlines. (e) Surface velocities. 

 

 

Figure 5: Geometry 2: Medium-sized fusiform aneurysm in the 

bifurcation of the CCA. (a) WSS. (b) OSI. (c) RRT. (d) Velocity 

streamlines. (e) Surface velocity. 
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Figure 6: Geometry 3: Giant saccular aneurysm in the BA. (a) WSS. (b) 

OSI. (c) RRT. (d) Velocity streamlines. (e) Surface velocity. 

The OSI, which ranges from 0 to 0.2, indicates the directional 
changes in the WSS. Zero indicates no oscillation, whereas 0.2 indicates 
high oscillation [24] [25]. High OSI values were observed in the 
aneurysm geometries 1 and 3, and a low OSI was observed in the 
aneurysm dome of geometry 2, as shown in Figures 4b, 6b, and 5b, 
respectively.  

The RRT indicates the residence time of blood flow inside an 
aneurysm. A short RRT is indicated by values 0 to 7, whereas values >8 
indicate a long RRT [26]. A long RRT was observed in the aneurysm 
geometries 1 and 3, whereas a low RRT was observed in the aneurysm 
dome of geometry 2, as shown in Figures 4c, 6c, and 5c, respectively. 
Also, a long RRT was observed at the bifurcation of geometry 2.  

Overall, a high WSS, a high OSI, and a long RRT were observed in 
the aneurysm dome of geometries 1 and 3. In geometry 2, a low WSS, a 
low OSI, and a short RRT were observed in the aneurysm dome, 
whereas a high WSS and a long RRT were observed at the vessel 
bifurcation point. 

Velocity streamline and surface velocity were calculated to analyze 
the velocity distribution inside the aneurysms. To calculate the velocity 
distribution inside the aneurysm, we calculated the contour between 0 
and 0.865 ms−1. The velocity streamline indicates the blood flow 
circulation inside the aneurysms. Figures 4d and 4e show the changes 
in velocity streamline and surface velocity, respectively, for the 
aneurysm geometry 1. As blood was recirculating, and variable high 
velocities were observed based on the velocity streamline and surface 
velocity changes in the aneurysm dome. For the aneurysm geometry 2, 
the velocity streamline indicates the flow stagnation in aneurysm 
shown in Figure 5d. Changes in surface velocity were observed in the 
aneurysm, and the middle surface of the aneurysm demonstrated low-
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velocity values, as depicted in Figure 5e. As displayed in Figure 6d, 
flow disturbance and recirculation were observed in geometry 2, which 
is a giant aneurysm in the BA. The high velocity in the aneurysm dome 
is shown in Figure 6e. 

4.0 DISCUSSION 

Hemodynamics is important in predicting the risk of aneurysm rupture 
in cerebral arteries when using a single-phase blood flow model. WSS, 
OSI, and RRT are the key hemodynamic parameters that are directly 
related to aneurysm rupture risk in cerebral arteries [28]. However, in 
a single-phase, blood flow simulation, variations in high and low WSS 
values were not comprehensively investigated as to whether they 
describe the properties of a Newtonian and a non-Newtonian fluid [25]. 
In this study, a two-phase blood flow simulation was performed using 
three patient-specific aneurysm geometries. The two-phase blood that 
consists of plasma and RBCs plays an essential role in predicting 
rupture risk, which is indicated by a high WSS, a high OSI, and a long 
RRT. Jung et al. 2008 [18] observed a high velocity with high WSS 
values in plasma containing RBCs, whereas a low WSS was observed 
in WBCs in the multiphase blood flow model of Chubin et al. 2016 [13]. 
A high WSS, a high OSI, and a long RRT may be associated with a high 
risk of aneurysm rupture in cerebral arteries. 

WSS is an essential hemodynamic parameter in rupture risk 
prediction in brain vessels with an aneurysm. For the rupture risk 
analysis, WSS was calculated mainly using the normalized WSS and 
time-averaged WSS in cerebral arteries with aneurysms [5] [24]. The 
WSS contour value was normalized based on the actual WSS values, 
and the values obtained ranged from 0 to 1 or 2.5 [24] [29]. The time-
averaged WSS was calculated using the characteristics of an entire-time 
cycle and was measured in pascal, with normal values ranging from 1.5 
to 10 based on the absolute time-averaged magnitude of each wall mesh 
point vector [5]. As for the WSS in brain vessels with aneurysms, the 
contour value of the WSS is influenced by various parameters, such as 
blood vessel geometry, meshing, and blood cell properties. Usually, the 
blood pressure is 10,000 Pa when the WSS of the wall of a healthy vessel 
is 0 Pa to 20 Pa [30]. Valen-Sendstad et al. 2011 [22] simulated the 
average pulsatile blood flow in a middle cerebral artery aneurysm. The 
WSS contour was 0 Pa to 48 Pa based on the average pulsatile blood. In 
the aneurysm wall, the normal WSS values were 0 Pa to 1.5 Pa, and a 
WSS of 1.5 Pa to 2.0 Pa indicated a high risk of rupture. A value greater 
than 3.0 Pa is considered a high WSS [31]. 

Some studies have found that both high and low WSS were related 
to aneurysm growth and rupture [23]. However, the present study 
focuses on high WSS values in the aneurysm wall because the two-
phase blood plasma containing RBCs is associated with high WSS. 
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High WSS in turn is associated with positive WSS gradient resulting 
from endothelial cell damage, matrix metalloproteinase production by 
mural cells, extracellular matrix degradation, thinning of media, and 
apoptosis of smooth muscle cells and fibroblasts, and such an 
association further increases the risk of aneurysm rupture [27]. 

OSI, a non-dimensional parameter whose value ranges from 0 to 0.5, 
is used to calculate the directional changes in WSS in a cardiac cycle. In 
this study, OSI ranged from 0 to 0.2, consistent with the findings of 
previous studies, where 0 represents a steady flow and 0.2 represents a 
high oscillation in aneurysm geometries [25]. In an aneurysm, OSI 
indicates several directional changes throughout a cardiac cycle. A low 
OSI may promote atherogenesis and inflammatory diseases and may 
lead to intimal wall thickening [27] [32] [26]. However, in several 
studies, a high OSI has been observed in ruptured aneurysms, and it 
has been an independent risk factor in aneurysm rupture risk 
prediction [27] [26] [33]. 

The RRT is the residence time of blood near the aneurysm wall. The 
RRT was based on a low WSS and a high OSI inside the aneurysm. 
Long-term circulation of blood flow near the aneurysm wall could lead 
to the rupture of an aneurysm. A study involving 30 aneurysm cases 
investigated the RRT, which is an essential indicator of atherosclerotic 
changes in cerebral aneurysms [34]. The occurrence of a low WSS with 
long RRT was investigated in atherosclerotic and non-atherosclerotic 
aneurysms, respectively; long RRT was observed in atherosclerotic 
aneurysms but not in non-atherosclerotic aneurysms [7]. However, 
knowledge on the association between a high WSS with a long RRT and 
the high risk of rupture remains limited. The long residence time of 
blood cells triggers the cellular interaction that promotes blood clotting 
and wall dilation. A high WSS with a long RRT is a key indicator that 
leads to a high risk of aneurysm rupture in cerebral arteries.  

Table 1 presents the rupture risk assessment of the aneurysm 
geometries based on WSS, OSI, and RRT with mean Reynolds number. 
The simulation results for the last cardiac cycle are based on the inlet 
mean Reynolds number, which indicates the risk (i.e., high or low) of 
aneurysm rupture. The aneurysm geometries 1 and 3 demonstrate a 
high risk of rupture compared with the aneurysm geometry 2. In 
geometry 2, a high WSS, a low OSI, and a long RRT were observed at 
the vessel bifurcation point. According to Soldozy et al. 2019 [27], an 
aneurysm has a low risk of rupture, but further growth of the aneurysm 
could be anticipated. 

Table 1: Rupture risk analysis of the aneurysm geometries based on 

the changes in WSS, OSI, and RRT with mean Reynolds number. 
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Aneurysm 

geometries 

WSS OSI RRT Analysis 

Aneurysm 

geometry 1 

High WSS at 

𝑅𝑒𝑚 in 

between 1200 

to 1370 

High OSI at 

𝑅𝑒𝑚 = 1060, 

1200, 760, and 

660 

Long RRT 𝑅𝑒𝑚: 

1200 < 𝑅𝑒𝑚 < 

1370 

High risk 

of rupture 

Aneurysm 

geometry 2 

(aneurysm 

dome) 

Low WSS Low OSI Short RRT Low risk 

of rupture 

Aneurysm 

geometry 2 

(vessel 

bifurcation 

point) 

High WSS at 

𝑅𝑒𝑚 in 

between 1200 

to 1370 

Low OSI Long RRT 𝑅𝑒𝑚: 

1200 < 𝑅𝑒𝑚 < 

1370 

Low risk 

of rupture. 

Aneurysm 

growth 

may occur. 

Aneurysm 

geometry 3 

High WSS at 

𝑅𝑒𝑚 in 

between 800 to 

1370 

High OSI at 

𝑅𝑒𝑚 = 1370, 

1060, 930, 760, 

and 690 

Long RRT 𝑅𝑒𝑚: 

1200 < 𝑅𝑒𝑚 < 

1370 

High risk 

of rupture 

Previously, a high WSS, a high OSI, and a long RRT were reported 
as key indicators that are highly associated with a damaged artery wall 
and that may promote aneurysm rupture [27] [26] [31].  

5.0 LIMITATION 

This study has some limitations. The 3D rotational CTA images had a 
limited quality, lacked some information, and could not render a 
perfect 3D geometry of cerebral arteries with an aneurysm. A minor 
part of the geometry was assumed. Small blood vessels were not 
considered in the 3D geometry of the cerebral arteries with an 
aneurysm. The effect of the entire flow was assumed to be small and 
negligible. Due to the lack of experimental studies involving a two-
phase blood model, experimental data that were obtained within the 
laminar flow region were selected. Moreover, only three patient-
specific aneurysm geometries were selected for the numerical 
simulation of the two-phase blood flow model, but these three 
geometries may not generally represent the entire population of 
cerebral artery aneurysms. The two phases of blood, namely, plasma 
and RBCs, were considered in this study; the WBCs were not 
considered and were assumed as not having a significant impact on the 
flow given that their volume percentage is 1% compared with that of 
RBCs, which is typically 45%. In the current DPM simulation, the RBCs 
were assumed to be rigid spherical particles. RBC agglomerations were 
neglected and were considered as simply spherical particles. The 
number of particles injected ranged from 145,865 to 185,715, which is 
possibly lower than the actual number of RBCs in the blood. The two-
phase blood flow was solved in a continuous phase using the Navier–
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Stokes equation, and the particulate phase was solved with the DPM 
using the Lagrangian frame approach. The discrete phase trajectory 
was calculated using the formulation that included the discrete phase 
inertia and drag force. The zero-pressure outlet for the boundary 
conditions was chosen due to the limitation in obtaining the actual 
pressure data. The vessel wall was considered rigid with a no-slip 
boundary condition. Moreover, rupture risk was predicted based on 
published values. A high risk of rupture was associated with high WSS, 
high OSI, and long RRT. In the analysis of rupture risk, low WSS was 
indicated by <1 Pa, whereas high WSS was indicated by >3 Pa in the 
brain vessel. OSI indicated the directional changes in WSS, and it 
ranged between 0 and 0.2, where 0 indicated no oscillation and 0.2 
indicated a high oscillation. RRT was either long or short based on the 
contour value. A contour value between 8 and 14 indicated a long RRT, 
whereas a value of 7 or less indicated a short RRT. 

6.0 CONCLUSION 

The blood flow in the three aneurysm geometries was numerically 
simulated using the DPM, which considered the two-phase nature of 
blood. Three important hemodynamic parameters, namely, WSS, OSI, 
and RRT, were analyzed. The simulation of the two-phase blood flow 
revealed a high WSS (>3.0 Pa), a high OSI (>0.2), and a long RRT (>8) in 
medium- and giant-sized saccular aneurysms. In the investigated 
region, high stress, high flow oscillation, and flow recirculation may be 
associated with a high risk of aneurysm rupture. For a medium-sized 
fusiform aneurysm located in the CCA, a low OSI, a low WSS, and a 
short RRT were found at the aneurysm dome. The risk of rupture in the 
bulge area may be lower compare to other area. However, at the 
bifurcation point, a high WSS and a long RRT with low oscillation were 
observed. The aneurysm may tend to grow at the bifurcation area 
where velocity is high. The results suggested the need to 
comprehensively analyze the correlation between hemodynamic 
parameters and the risk of rupture. Given the limitations highlighted 
in this study, in-depth and detailed numerical simulation of a larger 
number of patient-specific geometries is warranted. This paper 
underscores the importance of biomechanical forces in the risk of 
aneurysm rupture. 
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ABSTRACT: Scoliosis is a musculoskeletal disorder seen all around the 

world. It affects both the alignment of the vertebra and intervertebral disc. 

Scoliosis can be treated conservatively with a cast and brace or surgically with 

spinal instrumentation. During planning for surgical instrumentation, several 

factors need to be considered. Among those, biomechanical changes in the 

non-scoliotic vertebrae and discs are important. This is vital in determining 

the future degenerative changes of the spine. For this reason, this study was 

conducted with a finite element model of the lumbosacral joint using CT scan 

files to find the total deformation and equivalent static strain of the 

lumbosacral disc between pre and post-operative thoracic scoliosis patients. 

From the results, it is evident that there is a biomechanical change in the 

lumbosacral disc and structural change in the vertebral alignment followed 

immediately after corrective surgery. The correction in the alignment of the 

scoliotic spine brings changes to the biomechanical functionality and load-

bearing capacity of the lumbosacral intervertebral disc before and after 

surgery. 

 

KEYWORDS: Thoracic scoliosis, Lumbosacral disc, Finite element analysis, 

Vertebral alignment, Vertebral load. 

 

1.0 INTRODUCTION 

The human vertebral column consists of 24 articulating and 9 fused 
vertebrae (7 cervical, 12 thoracics, 5 lumbar, 5 fused sacral, and 4 fused 
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coccyx vertebrae), which totals to 33 vertebrae. An intervertebral disc, 
held together by ligaments, separates the column formed by the 
articulating vertebra with the adjacent vertebra. This results in the 
formation of curves during weight-bearing. Scoliosis is a deformity of 
the vertebral column, in which the spine is abnormally twisted and 
curved to the sides. Globally scoliosis is one of the most common 
musculoskeletal disorders affecting the pediatric age group with a 
prevalence of 2-3%. When examining the spine from the back, a 
scoliotic spine will appear ‘C’ shaped (single curvature) or ‘S’ shaped 
(double curvature). It can be treated conservatively with a cast or brace 
or surgically with spinal instrumentation. Opting for surgical 
intervention depends upon various factors such as etiology, severity, 
cardiopulmonary involvement, Cobb’s angle, and age. During spinal 
instrumentation surgery, surgeons fuse the scoliotic vertebrae using 
metal implants. Since the alignment of vertebrae is affected in scoliosis, 
the Center of Gravity (CoG) and Line of Gravity (LoG) is also affected. 
In an anatomical standing posture, the CoG and LoG lie anterior to the 
sacrum bone (S2). Whereas, in scoliosis patients, the CoG and LoG are 
deviated depending on the configuration of the spine. This level of 
deviation can be roughly understood by measuring the coronal 
balance, sagittal balance, thoracic trunk shift, thoracolumbar and 
lumbar sagittal alignment. 

A study done by Damavandi et al., [1] on the head and trunk mass, 
and center of mass position estimations in able-bodied and scoliotic 
girls concluded that the pre-operative scoliotic girls have greater pelvic 
forward tilt and trunk inclination compared to normal subjects. 
Whereas, another study done by Park et al., [2] on the effect of scoliosis 
angle on sway on the center of gravity found that the whole-body 
balancing ability in pre-operative scoliosis patients is significantly 
different from normal persons. This explains the importance of pelvic 
tilt, the center of gravity, and trunk inclination in maintaining a proper 
posture. In scoliosis patients, since the trunk posture is altered or 
shifted to one side, it in turn provides more pressure to the lumbar 
region on the side of the scoliosis curve. Using image processing, a 
study conducted by Hajizadeh et al., [3] on a 3D multibody model of 
the scoliotic spine with lateral bending motion for comparison of 
ribcage flexibility concluded that the load at lumbar joints in the 
scoliosis model were higher when compared to the normal subjects. 
The vertebral column is connected with the pelvis and lower limbs 
forming a continuous plane for weight transmission and support for 
the body in bipedal gait and posture of humans. The pelvis is made up 
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of the hip bones and sacrum. The femur bone of the thigh forms an 
articulation with the acetabulum to form the hip joint. Weight from the 
head, arm, and trunk are passed through the vertebral column and 
transferred to the lower limbs through the sacrum and sacroiliac joint 
as shown in Figure 1. Intervertebral discs play a major role in 
transferring load from one vertebra to another. It acts as a shock 
absorber. 

 

Figure 1: Weight distribution [4]. 

Pressure within the center of the disc is never zero, because of the 
pre-existing tension even when the disc is unloaded. The physical 
property of the intervertebral disc allows it to withstand a considerable 
amount of load, even when the load is applied for an extended period. 
A normal intervertebral disc is an anisotropic structure [5]. National 
Institute for Occupational Safety and Health (NIOSH) guidelines for 
manual (1994) lifting concluded that the joint between the fifth lumbar 
vertebra (L5) and first sacral vertebra (S1) is the joint of greatest lumbar 
stress during weight lifting. A study done by Pel et al. found that a 20% 
reduction in vertical sacroiliac joint shear resulted in a 70% increase in 
sacroiliac joint compression force [6]. In normal subjects, the vertebral 
column is arranged linearly in the frontal plane and angular in the 
sagittal plane. Although, in a scoliotic spine, the vertebral column is 
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arranged angularly in all three planes as it is often accompanied by 
some amount of lateral twist in the spine (kyphosis). When scoliosis 
patients undergo corrective surgery, surgeons focus on correcting the 
vertebrae causing a scoliosis curve. Surgeons first perform osteotomy 
(removal of bone parts) and realign the vertebral column manually 
along the course of the expected normal vertebral curve. Using 
implants like Harrington rods and Pedicle screws which are made up 
of stainless steel or titanium, surgeons screw the vertebrae to the 
Harrington rods using Pedicle screws. Implants are to fix the corrected 
vertebra in its anatomical position and prevent it from scoliotic 
recurrence. After fixing the vertebrae, a layer of bone cement or local 
bone graft is applied over the rearranged vertebral column to fuse the 
corrected scoliotic vertebrae and to form a single fused vertebra. Thus, 
the scoliotic vertebral column is rearranged to a new or a normal 
position. 

Some claim that most of the curve is reduced because of the manual 
pressure. On the other hand, some claim it's due to vertebral fusion and 
metal implants. A study done by Trobisch et al., [7] on postoperative 
trunk shift in Lenke 1 and 2 curves concluded that the postoperative 
trunk shift is common after surgery for adolescent idiopathic scoliosis. 
But it occurs only in 13.6% of patients and 65% of trunk shifts are 
iatrogenic (caused by the surgeon). If the curve is corrected only by 
manual pressure, implants can take over the vertebral fusion. Then 
need for fusing the vertebrae will be a questionable debate. Even after 
spinal instrumentation, due to the sudden change in the configuration 
of the spinal column, patients feel a disturbance in their balance. A 
study by Carvalho de Abreu et al., [8] on the influence of surgical 
treatment of adolescent idiopathic scoliosis on postural control 
supports this theory. They concluded that the scoliosis patients have a 
large CoP oscillation compared to age-matched healthy adults. Even 
after surgery, oscillation is decreased in the initial 90 days. But later, it 
remained larger than before surgery. Also, another study done by 
Nohara et al., [9] on lumbar disc degeneration in patients with 
adolescent idiopathic scoliosis with spinal fusion claims that 48% of 
disc degeneration occurs at the Lumbosacral junction (L5-S1) and 
segments adjacent to fused vertebrae has only 8% of chance. If the 
abnormal curve (scoliosis) leads to an altered coronal balance, sagittal 
balance, thoracic trunk shift, thoracolumbar and lumbar sagittal 
alignment, then after treating scoliosis, these parameters should, by the 
right return to normal or at least close to normal. This raises a query of 
whether scoliotic vertebral fusion also affects the non-scoliotic 
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vertebrae (vertebrae not involved in the scoliotic curve) of the spine. 
Hence, in order to validate this, this study tried to find the total 
deformation and strain of the lumbosacral intervertebral disc between 
the pre and post-operated thoracic scoliosis patients. The objectives of 
this study were to find whether the manual correction during 
corrective surgery bring any immediate changes to the structure of the 
spine and to find whether the correction in the alignment of the thoracic 
scoliotic spine brings any changes to the biomechanical functionality 
and load-bearing capacity of the lumbosacral intervertebral disc before 
and after surgery. 

2.0 METHODOLOGY 

The prevalent of scoliosis is 1 to 2% in adolescence. Among those 1 to 
2%, determining the patients with the same side and the same level of 
scoliosis who underwent corrective surgery is tiresome work and the 
availability of such kind of data is exceptional. Hence, this study was 
an observational cross-sectional study. The sampling method followed 
was convenience sampling. 

2.1 Data Collection 

Data collection was done at Government General Hospital, Chennai, 
India. Proper consent was obtained from the radiology department 
before collecting data. Since bone fusion gets complete by 6 to 9 months 
after surgery [10] [11], pre-operative and post-operative CT scan data 
of patients who underwent scoliosis correction not more than 2 months 
and with the age group between 10 to 20 years were selected for this 
study. Only 1 patient fulfilled the above-mentioned criteria. The patient 
had right thoracic scoliosis and his lumbar bones had normal vertebral 
alignment. Radiographs were taken with the patient in a lying position. 
During standing, patients might tilt their pelvis unknowingly. Both the 
Pre-operative and post-operative radiographs were obtained in 
DICOM format. Baseline assessments like age, sex, date of surgery, and 
date of the scan were noted and presented in Table 1. 

Table 1: Patient Details 

Gender Age Pre-operative Scan Date of Surgery Post-operative Scan 

M 19 12-01-2016 19-01-2016 26-02-2016 

 

2.2 Method 

Obtained DICOM files were imported into an image segmentation 
software Materialise, version 20.0 (Materialise Inc., Belgium). The 
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lumbosacral joint was selected as the region of interest, which consists 
of the fifth lumbar vertebra (L5), sacrum, and lumbosacral disc. Other 
parts were cropped out. No metal implants, blood vessels, ligaments, 
endplates, and muscles were comprised in the image segmentation. 
Two separate masks were created for bones and discs and were 
converted into parts. The developed parts were smoothened and 
wrapped to hide any edges or holes. In order to maintain surface 
contours, an adaptive remesh was carried out with a triangle edge 
length of 1 mm. Then, the developed parts were converted into solid 
volume. This solid volume was meshed with 4 node tetrahedral 
elements and a maximum edge length of 2 mm, to have a uniformed 
mesh as shown in Figure 2. The meshed volume of the homogeneous 
lumbosacral segment was exported to an FEA solver program ANSYS, 
version 17.2 (Ansys, Inc., U.S.A) as .CDB files. The same procedures 
were followed for both the pre and post-operative DICOM sets. 

 

Figure 2: Meshed Lumbosacral Joint 

The exported .CDB files were opened with the Ansys Workbench 
module. Static structural analysis was set to run. A linear homogeneous 
isotropic material property was used to run the simulation. The 
isotropic material properties of bone and disc were attained from 
works of literature [12] and [13] and provided in Table 2. The large 
deflection was turned off and the direct solver type was selected. In our 
previous study [14], it was found that on a normal standing position, 
an average adult weighing 65 kgs with a normal lumbosacral angle of 
30° would exert a net force of 196 N on the lumbosacral disc. Hence, 
the same 196 N force was applied in this model. The sacrum was set as 
fixed support and 196 N downward force was applied on the L5 
vertebra. The total deformation and equivalent elastic strain of the 
lumbosacral disc were measured. 

Table 2: Material properties of Homogeneous model 

 Young’s Modulus (MPa) Poisson’s Ratio References 
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Bone 200 0.3 
[12, 13] 

Disc 4 0.4999 

 

3.0 RESULTS AND DISCUSSION 

Results of applying 196 N force on the lumbosacral disc between pre 
and post-operative models showed us that there is a difference between 
them. Before the correction, the total deformation and equivalent 
elastic strain of the lumbosacral disc were found to be 0.00020242 m 
and 0.03153 m/m. Whereas, after correction and before complete fusion 
of the scoliotic vertebrae, the total deformation and equivalent elastic 
strain of the lumbosacral disc was found to be 0.00011567 m and 
0.019186 m/m. The number of nodes, elements, total deformation, and 
equivalent elastic strain of pre-operative and post-operative models is 
represented in Table 3. 

Table 3: Results. TD – Total Deformation, EES – Equivalent Elastic 

Strain 

 Pre-operative Post-operative 

Nodes 65755 58247 

Elements 385584 326962 

TD 0.00020242 m 0.00011567 m 

EES 0.03153 m/m 0.019186 m/m 

It was evident that the area of total deformation and area of 
equivalent elastic strain in pre and post-operative discs had changed. 
In the pre-operative lumbosacral disc, the maximum area of total 
deformation was on the anterior aspect of the disc. Much force was 
concentrated on the anterior and had uneven distribution. Whereas, in 
post-operative, the maximum area of total deformation was on the 
anterolateral aspect of the disc and the force of 196 N was distributed 
to the disc to a certain extent as shown in Figure 3.  

 

(a)      (b) 

Figure 3: Total Deformation of Lumbosacral disc; (a) Pre-operative and 
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(b) Post-operative 

 

(a)      (b) 

Figure 4: Equivalent Elastic Strain of Lumbosacral disc; (a) Pre-

operative and (b) Post-operative 

We noticed the same level of changes in the equivalent elastic strain 
as well. In pre-operative it was found that the maximum strain was on 
the lateral aspect of the disc (right side). In post-operative, the 
maximum strain was found nearly on both the sides (lateral) on top 
(superior) of the disc as shown in Figure 4. It is also important to note 
that the number of nodes and elements of the same patient varies 
between pre and post-operated lumbosacral models. 

Earlier, a study by Karami et al., [15] on the assessment of coronal 
radiographic parameters of the spine in the treatment of adolescent 
idiopathic scoliosis concluded that precise attention to the coronal 
balance in pre-operative is vital in the prevention of post-operative 
decompensation. During the scoliosis correction surgery, surgeons 
perform osteotomy, place bone grafts in the course of the scoliosis 
curve, and fuse the vertebrae together. With the help of metal implants, 
bone grafts, and bone regeneration, curve correction occurs promptly. 
Another study by Ameri et al., [16] on the natural history of coronal 
balance after spinal fusion in adolescent idiopathic scoliosis revealed 
that the first 12 months after posterior spinal fusion is the spontaneous 
improvement period for coronal balance.  

Our earlier study [17] on thoracic trunk shift and coronal balance 
conducted among 24 pre and post-operated thoracic scoliosis patients 
found that there is a significant decrease in the trunk shift and coronal 
balance between pre and post-operative patients. These 24 thoracic 
scoliosis patients are those who underwent correction surgery at least 
a year before the date of data collection. Their X-Ray images were used 
for measurement. The pre-operative thoracic trunk shift and coronal 
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balance were measured to be 42.45 ±10.36 mm and 14.75 ±4.12 mm. 
Whereas, the post-operated thoracic trunk shift and coronal balance 
were measured to be 14.83 ±5.18 mm and 4.25 ±1.35 mm. Since the 
patients had 12 months of duration from the date of surgery to the date 
of data collection, this decrease in trunk shift and coronal balance could 
be because of the implants and vertebral bone fusion. Whereas, the 
present study was conducted with the patient who had only a 1-month 
duration between the date of surgery and the date of data collection. 
This indicates that, along with the implants and vertebral bone fusion, 
the surgeon’s manual correction of scoliotic vertebral alignment also 
plays a major role in scoliosis correction. After correction, the vertebral 
column gets a new alignment. This forces the rest of the adjacent 
vertebrae and other bones like ribs and sacrum to regenerate 
accordingly. This regeneration of bones after scoliosis correction could 
be the reason for the difference in the number of nodes and elements 
between the pre and post-operated lumbosacral model of the same 
patient. 

This study had few limitations. Human bone is nonhomogeneous 
and anisotropic. Since the volume of the lumbosacral segment is small 
and this study aimed to find only the structural change between pre 
and post-operative, the property of bone and disc were assumed to be 
homogeneous and isotropic. The second limitation was the mesh 
independence study. Instead of performing a mesh independence 
study to find the optimal mesh size, a standard mesh size of 2 mm was 
selected as it was widely used in the literature. It is advisable that the 
upcoming researchers use more sample size, perform mesh 
independence study, and consider the model as nonhomogeneous and 
anisotropic to get more precise results. 

4.0 CONCLUSION  

This study results showed that, the total deformation and equivalent 
elastic strain of lumbosacral disc at 196 N force as 0.00020242 m and 
0.03153 m/m. Whereas, after correction and before complete fusion of 
the scoliotic vertebrae, it was found to be 0.00011567 m and 0.019186 
m/m. From this study, it can also be inferred that manual correction in 
the alignment of the thoracic scoliotic spine during corrective surgery 
brings immediate changes to the structure of the spine, changes in the 
disc load distribution pattern, and bone remodeling in the adjacent 
vertebrae, ribs, and sacrum. This helps in the improvement of the 
functional capacity of the individual and thus helps in reducing the 
morbidity due to the deformity before correctional surgery. 
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ABSTRACT: Digital signal processing (DSP) and Machine learning (ML) 

have emerged as promising approaches to automate prediction tasks into 

electromyography (EMG) muscles conditions. To fill the research gap, This 

paper reviews the state-of-the-art applications of DSP and ML for EMG signal 

analysis. DSP techniques to extract information of EMG signal is highly 

needed. The major disadvantage of the frequency domain approach is it does 

not represent temporal information. Many time-frequency analysis techniques 

have been proposed. However, there is a compromise between time and 

frequency resolution. The techniques that minimize the EMG noise and 

analyze signal characteristics are discussed together to identify the best 

performance with the highest percentage of accuracy and efficiency. The most 

appropriate method depends on the EMG signal patterns, the quality and 

quantity of the signals and training data developed, and various types of user 

factors. 

 

KEYWORDS: Digital Signal Processing; Machine Learning; Electromyography  

 

1.0 INTRODUCTION 

The work on electromyography (EMG) signal processing, as well as the 
utilization of EMG signal analysis for clinical applications and 
engineering studies such as prosthetic arms and musculoskeletal 
disorders, will be discussed in this presentation. The basic theory of 
myoelectric signal creation will be briefly discussed at the outset of this 
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study [1]. Following that, the signal processing techniques used on the 
EMG signal such as time domain, frequency domain, and the time-
frequency domain will be discussed [2].  

It includes signal acquisition methods, such as noise removal, as well 
as signal processing techniques such as amplitude and spectrum 
analysis. This paper will also look at several works and works of 
literature on the use of the EMG signal as a tool for various applications 
such as clinical diagnosis, motion analysis, prosthetic device, and to 
know the performance of the muscles [3].  

 Machine learning algorithms, such as traditional machine learning 
algorithms, and reinforcement learning algorithms, have been widely 
used in the medical field and have played an important role in the 
diagnosis and treatment of diseases as an essential component of 
artificial intelligence [4].  

 Thus, in this paper, some types of DSP methods and machine 
learning will be discussed to identify the proper and optimum method 
that can provide more information from the signal characteristics and 
the ML to identify the type of algorithm that can give the highest 
performance comparisons of accuracy.  

2.0 THE RELATION OF DIGITAL SIGNAL PROCESSING, 

MACHINE LEARNING AND ELECTROMYOGRAPHY  
2.1 Electromyography (EMG) 

Electromyography (EMG) is the measurement of electrical potential 
arising from electrochemical effects due to muscle contractions. These 
signals are transmitted via human tissue to the surface of the skin, 
where they can be measured by surface EMG electrodes and it is a 
complicated and non-stationary signal, which is controlled by the 
human nervous system. Areas of application for these sensors include 
exoskeletons, diagnostics, and myoelectric hand prostheses [5]–[7]. 
EMG has become a reliable and cost-effective method for signal 
acquisition in limbs. Placing electrodes inappropriate position of skin 
is an important criterion to get the optimum EMG signals  [8], [9]. 

2.1.1 EMG Signal Analysis  

The EMG signal is a biomedical signal that measures electrical currents 
generated in muscles during their contraction representing 
neuromuscular activities. The nervous system continuously controls 
muscle activity such as during contraction and relaxation. EMG signal 
is a complex signal, which is controlled by the nervous system and is 
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dependent on the anatomical and physiological properties of muscles. 
EMG signal acquires noise while travelling via different tissues  [10]. 
This signal is a complex and non-stationary signal, which is controlled 
by the human nervous system. The amplitude of EMG signals is a very 
small value between 50uV to 1mV, with the frequencies varying from 
10 Hz to 3000 Hz [11]. The EMG signals can be measured by applying 
electrodes to the skin surface (non-invasive method) or intramuscular 
(invasive method) within the muscle. Even though the efficiency of 
surface EMG is lower than the intramuscular EMG, but still for research 
purposes, surface EMG is more popular since it is non-invasive and 
more convenient to use  [12]. Figure 1 shows the EMG signal for normal 
muscle during contraction. 

 

Figure 1: Normal EMG Signal 

The flow of EMG signal analysis is divided into some phases for the 
health screening task. Figure 2 shows the flow phase of EMG signal 
analysis. There are four phases which are raw data collection of EMG 
signal, pre-processing, analysis of features extraction and classification 
of EMG signal by using time-frequency distribution (TFD) and signal 
classification. 

 

 

 

 

 

 

Figure 2: Flow phase of EMG signal analysis 

 It has been commonly accepted that the preferred manner for 
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processing the EMG signal is to calculate the integrated rectified signal. 
This was done by rectifying (rendering the signal to have excursions of 
one polarity) the EMG signal, integrating the signal over a specified 
interval of time, and subsequently forming a time series of the 
integrated values. The advances made in electronics devices during the 
past decades have made it possible to conveniently and accurately 
calculate the root-mean-squared (RMS) and the average rectified 
(AVR) value of the EMG signal. The AVR value is similar to the 
integrated rectified value if the calculations are made correctly and 
accurately. 

Both these variables provide a measurement of the area under the 
signal but do not have a specific physical meaning. The EMG signals 
which are going to be analyzed are represented in time-frequency 
representation (TFR) which includes parameters such as instantaneous 
RMS voltage. Frequency domain analysis that the first frequency 
analysis technique used is known as the Fast-Fourier Transform (FFT).  

 FFT is the mathematical technique to convert the signal from a time 
domain to a frequency domain. FFT is performed to estimate the 
frequency characteristics of the EMG signal. The limitation of the FFT 
is that it is not able to cater to non-stationary signals whose spectral 
characteristic changes in time. This can be overcome by the Linear 
Time-Frequency distribution (TFD) technique. 

 To increase the test efficiency of patients’ muscle condition a 
technique to extract information is highly needed. Many time-
frequency analysis techniques have been proposed and one of the most 
commonly used is short-time Fourier transform (STFT) which is a form 
of linear time-frequency distribution (TFD) [13]. However, the major 
disadvantage is that it does not represent temporal information. [12]. 
To solve the problem, Dennis Gabor (1946) improved the Fourier 
analysis to small sections of signals and divided by the time of analysis 
in intervals.[14]. The main shortcoming of this method is that there is a 
compromise between time and frequency resolution. The main 
disadvantage of this technique is that there is a compromise between 
time and frequency resolution. The greater the temporal resolution 
required, the worse the frequency resolution will be and vice versa. 
Figure 3 shows the example of the time-frequency representation (TFR) 
of a signal using the STFT. The TFR presents the temporal and spectral 
information of the signal [15]. 
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Figure 3: Example of time-frequency representation using Short Time 

Fourier Transform (STFT) [15] 

 

2.1.2 Equipment for Data Collection EMG signal 

Consensys is the software that works together with Shimmer sensors 
which adds significant features to live data, managed data, and devices. 
It is adaptive human data collection in the field, large-scale repeatable 
trials, and general multi-sensor management. Consensys enables the 
following functionalities as  Configuring Shimmer sensors, Streaming 
real-time data, and Managing collected data. Figure 4 (a)(b)(c) shows the 
Consensys software Interface [16]. 
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Figure 4: Consensys software Interface [16] 

The Shimmer3 Consensys EMG Development Kit can be utilized to 
monitor two channels of non-invasive surface EMG, providing a 
representation of the muscle activity at the measurement site. The EMG 
Development Kit can also be utilized to monitor ECG 
(Electrocardiogram), recording the pathway of electrical impulses 
through the heart muscle. Combined with Shimmer's integrated 
altimeter and 9DoF inertial sensor platform, greater context can be 
given to the wearer's activity and condition in real-time. Figure 5 shows 
the Consensys EMG Development Kits [17]. 

 

Figure 5: Consensys EMG Development Kits 

The Shimmer3 EMG unit can measure and records the electrical 
activity associated with muscle contractions, assesses nerve 
conduction, muscle response in injured tissue, activation level, or can 
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be used to analyze and measure the biomechanics of human or animal 
movement. Other than that, it can provide a configurable digital front-
end, optimized for the measurement of physiological signals for 
EMG[18].Shimmer3 EMG  sensor consists of two channels of EMG data 
as shown in Figure 6 and EMG data can be measured simultaneously 
with 10DOF kinematic data. 

 

Figure 6:  Consensus Shimmer3 EMG Unit 

Consensys Base6 (Figure 7) is used to configure and capture data 
from multiple sensors simultaneously, to simplify the setup of trials 
and storage of recorded data. The key features of Consensys Base6 
consist of Shimmer3 firmware updating, Shimmer configuration, 
Multi-Shimmer synchronization, and logged data management [19]. 
Other than that, the functional Base6 is to provide for the simultaneous 
management of all your Shimmer Sensors including charging, 
firmware updates, configuring sensors, retrieving and processing 
logged data. Besides that, Consensys Base6 is compatible with the 
Shimmer3 range of Kinematic and Biophysical sensors including ECG, 
EMG, Galvanic Skin Response, Optical Pulse, and Heart Rate as shown 
in Figure 8. 

 

Figure 7:  Consensus Shimmer Base6 

Channel 2 

Channel 1 
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Figure 8:  Installation Consensus Shimmer3 EMG Unit on Base6 

The Shimmer MATLAB is the Instrument Driver which is an 
orientated solution for Shimmer to capture the data directly into 
MATLAB. This driver will allow Shimmer users to stream data directly 
to MATLAB, and assist users of the Shimmer3 Platform in the 
development of Shimmer-based applications in MATLAB. Figure 9 
shows the interface of the Shimmer MATLAB Instrument Driver [20]. 

 

 

Figure 9: Shimmer MATLAB Instrument Driver [20] 

2.2 Digital Signal Processing (DSP) 

Digital signal processing is known as one of the elementary 
technologies utilized in the field of biomedical engineering [21] other 
than communication [22]–[24]. Digital signal processing is the method 
to process signals by using numerical methods. It is a subject that uses 
computers or special digital processing equipment. The typical 
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purpose of digital signal processing is the acquisition of biological 
signal, noise reduction, signal transformation, analysis, synthesis, 
filtering, evaluation, identification, and others so that the required 
signal can be extracted [1],[25]. The basic flow of the digital signal 
processing is shown in Figure 10. 

 

Figure 10:  Digital Signal Processing Flow [22] 

 Digital signal processor that can execute different things, depending 
on the application being performed. Some of these variants are audio 
signal processing, audio and video compression, speech processing 
and recognition, digital image processing, and radar applications. The 
difference between each of these applications is how the digital signal 
processor can filter each input. Five different aspects vary from each 
DSP: clock frequency, RAM size, data bus width, ROM size, and I/O 
voltage [26]. 

2.3 Machine Learning (ML) 

Machine learning is one of the artificial intelligence (AI) that predicts the 
outcome without relying upon the pre-determined equation. Machine 
learning learns the information directly from the data and it instructs 
the computer to do by learning from the experience [17]. Machine 
learning is divided into supervised and unsupervised learning. More 
specifically, classification is one type of supervised learning. Unlike 
unsupervised learning, supervised learning predicts the categorical 
responses from known response data set [18]. Moreover, machine 
learning is learned from experience, which is the features extracted from 
the signals. In recent days, the classifiers such as support vector 
machines (SVM), k-nearest neighbour (k-NN), linear discriminate 
analysis (LDA), naïve Bayes (NB), artificial neural network (ANN), 
general regression neural network (GRNN), multilayer perceptron 
neural network (MLPNN) and decision tree (DT) are widely used in the 
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classification of EMG signals. 

 Machine learning represents an effective method for data analysis in 
many domains: it has recently demonstrated its effectiveness in 
processing tactile sensor data [27]. Machine learning and artificial 
intelligence applications have grown rapidly across several disciplines, 
industries, and cultures.[28]–[30]. 

3.0 APPLICATION OF DIGITAL SIGNAL PROCESSING AND 

MACHINE LEARNING FOR EMG 

In 2016 Elhan Umut and Güven Çentik has been studies the Digital 
Signal Processing in EMG [31] .In this study, the researcher intended to 
detect periodic leg movement (PLM) in sleep with the use of the 
channels except for leg electromyography (EMG) by analyzing 
polysomnography (PSG) data with digital signal processing (DSP) and 
machine learning methods. PSG records of 153 patients of different 
ages and genders with PLM disorder diagnoses were examined 
retrospectively. A novel software was developed for the analysis of 
PSG records. The software utilizes machine learning algorithms, 
statistical methods, and DSP methods. To classify PLM, popular 
machine learning methods (multilayer perceptron, 𝐾-nearest 
neighbour, and random forests) and logistic regression were used. 

Next, in the same year in 2016, Theresa Roland and his teams used 
the same application regarding DSP and EMG [32]. The teams 
introduced the new capacitive measurement system to the application 
in prostheses. A capacitive EMG prototype, consisting of a flexible 
sensor and measurement electronics, was developed. The electronic 
circuit, used for signal amplification and filtering, is described. An 
ultralow-power microcontroller was used for the implementation of 
algorithms for EMG signal processing. DSP algorithms were optimized 
for real-time processing and minimal computing power. Muscle 
signals, measured with this prototype, are presented. 

In the year 2021,  Basilio Vescio has developed and validated a new 
mobile tool for the automated and quantitative characterization of 
phase displacement resting tremor pattern in ambulatory clinical 
settings using DSP for µEMG application [33]. A new low-cost, 
wearable mobile device, called, µEMG, is described, based on low-end 
instrumentation amplifiers and simple digital signal processing (DSP) 
capabilities. 

3.1 Machine Learning in EMG  
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Back in 2017, a study has been done by Jianyun that involves ML in 
EMG studies [34]. In his study, the real-time TMS320C6748 DSP was 
used instead of Matlab to collect and analyze the surface 
electromyography (SEMG), to realize the real-time detection of 
electromyogram (EMG) parameters. He uses the frequency domain 
feature extraction method to analyze muscle fatigue, and study the 
effectiveness of the EMG fatigue analysis.    

 For two years,  Jianhua Zhang and his team have developed 
extracted four time-domain features of the EMG signals and use a 
generative graphical model, Deep Belief Network (DBN), to classify the 
EMG signals [35]. A DBN is a fast, greedy deep learning algorithm that 
can rapidly find a set of optimal weights of a deep network with many 
hidden layers. 

In 2020, similar technologies in ML and EMG have been used in 
studies done by Yuri Kovalev and JoyRoy [36], [37]. Yuri has created a 
system for controlling devices using EMG signals from a small number 
of sensors by recognizing signal sections corresponding to the 
operator's gestures. The solution implements a scheme of three 
independent components: sensors, a user interface, and a data 
processor, connected by a simple data transfer protocol, which allows 
replacing any of the parts if necessary. 

While Joy Roy investigated the different machine learning 
techniques for predicting the SEMG activities on upper limb muscles. 
Various issues were presented for predicting SEMG activities on upper 
limb muscle including muscle classification techniques, muscle 
selection, and SEMG parameter to signify the muscle activities. These 
outcomes can be applied for predicting the upper limb muscle activities 
to identify the critical situation of neuromuscular disorders patients.  

Any brain-computer interface (BCI) system must translate signals 
from the user's brain into messages or commands [38]. Many signal 
processing and machine learning techniques have been developed for 
this signal translation. Although these techniques are often illustrated 
using electroencephalography (EEG) signals, they are also suitable for 
other brain signals. Gurjit and his team have proposed a novel 
combination of supervised ML with DSP, resulting in ML-DSP: an 
alignment-free software tool for ultrafast, accurate, and scalable 
genome classification at all taxonomic levels [39]. They test ML-DSP by 
classifying 7396 full mitochondrial genomes at various taxonomic 
levels, from kingdom to genus, with an average classification accuracy 
of less than 97%. 
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4.0 CONCLUSION  

From this study, it has been founded that the application of DSP and 
ML in EMG is widely used through various technologies and 
implementations. All the studies revealed that DSP and ML are related 
to each other wherein biosignal processing there is a need of the DSP 
and ML application into the EMG study to classify the signal to 
minimize the EMG noise of signal, However, most of the studies do not 
cover the EMG study using ML and DSP altogether. They only 
managed to focus on certain areas and segments that are related to the 
field of their study. Thus, this paper will help the future researcher to 
find the information on the relationship between EMG, digital signal 
processing as the technique of signal analysis, and machine learning 
for classification method to provide the best method and classification 
for EMG signal or another clinical nerve electrophysiology including 
electroencephalography (EEG). 
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ABSTRACT: Musculoskeletal disorders (MSDs) affect people all over the 

world and are the second leading cause of disability in the workplace. There are 

many methods used to analyse MSDs to know the real situation and affected on 

the employees. The review is to compare in terms of design the findings, 

methodology, approach and identify the method, sample size, and what they 

have found from the previous researchers that have many advantages dan 

disadvantages of the method to come out the best suggestion of proper method 

to used and suggestion method to explore more for the future researchers. The 

following technique was used to find relevant literature. After scoping research 

into different types of MSDs analysis techniques, keywords were found by 

focusing on the method and approach. The study found that most of the methods 

in MSD more focus on the Questionnaire as the Method of data in analysis for 

MSD. However, it is more to after injuries of MSDs happened, but not focusing 

on a method to avoid the MSD from happed. Thus, involving EMG signal is the 

proper way to identify MSDs problem with considering the current trend and 

suggestion from rehabilitation as SOCSO. This paper provides the suggestion 

method strategies for the researcher of the future to go further in MSD to tackle 

the more interesting and important information for MSD in the future. 

 

KEYWORDS: Musculoskeletal Disorders (MDSs), Method Analysis, Lower Back Pain 
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(LBD), Upper Limb Disorders (ULDs), Lower Limb Disorders (LLDs) 

 

 

1.0 INTRODUCTION 

MSD is a worldwide occupational health issue that is now being debated. In 

Malaysia, there has been an upward tendency in recent years, especially in 

the manufacturing sector [1]. One of the most common causes of workplace 

accidents and disabilities in the healthcare field is musculoskeletal disorders 

(MSDs) and injuries. Construction is regarded as the most dangerous activity 

when opposed to other sectors [2].   

As a result, in many high-income nations, it has become a well-known topic 

in safety research [3]. Manual handling, heavy lifting, repetitive work, and 

difficult jobs have all been identified and documented  workplace risk, issues 

caused by rapid exertion or excessive exposure to physical factors  [3][4]. 

Muscles, nerves, tendons, joints, cartilage, and supporting tissues of the 

upper and lower limbs, spine, and lower back will be affected by these issues 

[5]. 

Musculoskeletal disorders (MSDs) affect people all over the world and are 

the second leading cause of disability in the workplace. These disorders 

account for 40-50 percent of the total cost of all work-related illnesses [6][7]. 

Furthermore, 50% of all more than 3 days' absences from work and 49% of all 

more than two-week absences cause by MSDs. The quantity, speed, and 

amount of power exerted with each movement are all directly related to the 

risk disorder [6], [8]. Muscle performance is the key to know the muscle 

recovery and suggest the average effect for intensive nixed exercise for 

strength and endurance exercise and massage to more effective for the 

subjects [9]. 

Some medical technologies, such as equipment and analysis methods, have 

been used to understand or measure the situation of MSD among humans, 

whether they are employees or have a history of accidents [10],[11]. It is being 

referred to as any tissue damage to the musculoskeletal and nervous systems, 

which affect organ function [12]. This study aims to know in detail about the 

previous method used to analyse MSDs issues and what the method offered 

to know the performances of MSD for particular mentioned. Thus, from the 
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study of previous techniques of MSDs analysis, it will able to know more 

detail about the advantage and disadvantages of all the methods used by 

researchers before. 

1.1 Types of MSDs 

Low Back Pain (LBP) 

Low back pain is a very common symptom  and becomes the most 

common MSD is back pain [13]. It affects people of all ages, from children 

to the elderly, in high-income, middle-income, and low-income countries. 

Between 1990 and 2015, the number of years spent disabled by low back 

pain rose by 54% globally, potentially arise from population growth and 

aging, with the greatest increases occurring in low- and middle-income 

countries, such as Asia, Africa, and the Middle East. Low back pain is 

now the most common cause of disability in the globe [14], and in areas 

where adequate resources to address the problem are lacking, the 

consequences are likely to be more severe [15]. Figure 1 shows the 

position of lower back pain in the human body. 

 

 
Figure 1: Lower Back Pain (LBP) 

 

Upper Limb Disorders (ULDs) 

Any injury or disease affecting the upper limbs, from the fingertips to the 

shoulder or spine, is classified as an upper limb disorder. Work-related 

musculoskeletal conditions are the most common occupational health 

problem in the UK, accounting for about 40% of sickness absences in the NHS. 

Work-related upper limb diseases (ULDs), which affect the hand, wrist, arm, 

shoulder, and neck, affect 700 people per 100,000 in the UK [16]. Because of 

the nature of anaesthetists' work, they are at an increased risk of bad posture, 
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which can contribute to the development of upper limb diseases. Figure 2 

shows the position of upper limb disorders in the human body. 

 
Figure 2: Upper Limb Disorder (ULDs) 

 

Lower Limb Disorders (ULDs) 

 Injury and abnormalities of the lower limbs, ranging from the hip to the 

toes. Work-related musculoskeletal illnesses are a significant financial burden 

on society and one of the leading causes of lost productivity due to illness 

[17]. Work-related health problems have significant expenses for their 

employers, in addition to the apparent effects for the individual. Many 

researchers have looked into the prevalence of and risk factors for work-

related upper limb, neck, and low back diseases [18]. However, when 

compared to other work-related musculoskeletal complaints in the upper 

body or low back pain, lower limb issues have received less attention. Lower 

limb disorder in the human body are shown in Figure 3 [19]. 
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Figure 3: Lower Limb Disorders (LLD) 

 

2.0 RESULTS AND DISCUSSION 
2.1 Musculoskeletal Disorders (MSDs) analysis 

 
Table 1: Types of method analysis of Musculoskeletal Disorders (MSD) 

 
Authors Objectives Method Sample  

Size 
Results 

[20] MSD with depression 
as a mediator among 

school teachers to 
examine psychosocial 

aspects 

Answer the Work 
Organization 
Assessment 

Questionnaire 
(WOAQ) 

 
Statistical Package for 
Social Science (SPSS) 

367 
respondents 

80.1 % (95 percent 
confidence interval: 

75.8–84.2 %), with 80.5 
% of female teachers 
and 77.5 % of male 

instructors 
experiencing 

symptoms at that 
time. 

[11] Improve the features of 
Health Screening Test 

System (HSTS) for 
MSD 

development of HSTS 
evaluation 

 
Functional Range of 

Motion (FROM) 

20 constructed for 
evaluating the plan, 
comparing it to the 
MTM standard, and 
providing criticism 

[21] Men and women 
veterans with TMD 
were compared in 

terms of MS, pain, and 
mental health 
comorbidities. 

For cross-sectional 
analysis, chi-square 

tests, t tests, and 
logistic regression 

were used. 

NA Odds of TMD were 
higher in men of 

Hispanic ethnicity 
(OR¼1.38, 95% CI ¼ 

1.27–1.48) and 
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[22] During treadmill 
walking, 

electromyography 
(EMG) signals were 

obtained. 

The significant level of 
EMG activity was 

determined using a 
paired sample t test. 

 
 
 
 
 
 
 

Changed Words 
 

Structural Changes 
 

Thesaurus 
 
 

105 The t-test was used to 
determine the 

significance level of 
EMG activity, and the 

results revealed 
significant differences 
between the right and 

left side packs. 

[23] identify the related 
factors of a taking 

healthy sitting posture 
in office workers 

qualitative study 
aimed to use the 

theoretical domains 
framework (TDF) 

25 Skills, knowledge, and 
behavioural 

regulation are among 
the TDF domains that 

have been mapped. 

[24] EMG signal 
categorization for a 

health screening job for 
musculoskeletal 

disorders 

Functional Range of 
Motion (FROM)- 
time-frequency 

method- spectrogram 
-classification- k-

Nearest Neighbor (k-
NN), Linear 
Discriminant 

Analysis (LDA), Nave 
Bayes (NB), and 
Support Vector 

Machine are machine 
learning classifiers 

(SVM) 

5 LDA is the best 
classifier method for 
classify emg signal 
with features Mean 

Vrms (93.33%), 
standard deviation 

(80%) 
 
 
 
 
 
 
 
 

[25] Utilise the time-
frequency spectrum 

obtained using 
generalised Warblet 
transform (GWT) for 

EMG fatigue analysis. 

 Time-frequency 
spectrum 

20 In non-fatigue 
conditions, the IMNF, 

IMDF, and ISPEn 
increased by 

percentage, 34 %, and 
36 %, respectively. In 
contrast, weariness is 

associated with a 22 % 
ISSkw. 

[26] cross-sectional - to 
determine 

musculoskeletal work 
related pain  

Standardized Nordic 
Questionnaire (SNQ) 

 
Data so obtained was 

analysed using 
Statistical Package for 
Social Science (SPSS) 

Version-16 data 
analysis software 

 
60 

prevalence of 
musculoskeletal 
problems in the 

present study was 
found to be 68.3% 

[27] investigate the 
prevalence of 

musculoskeletal 
disorders (MSDs) in 

the general population. 

Rapid Entire Body 
Assessment method 

51 neck (47%), shoulder 
(51%), lower back 

(43%), and knee (47%) 
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[28] suggest signal 
processing approaches 

for evaluating the 
temporal and spectral 

changes in 
characteristics of the 
surface myoelectric 
signal in different 

patient groups 
 

to investigate the 
electrical 

manifestations of 
neuromuscular disease 
using  time-frequency 
analysis of continuous 

wavelet  

Continues Wavelet 
Transform (CWT) 

 
Mean absolute value, 
the energy, standard 

deviation as 
temporal 

parameters, total 
and mean power as 

frequency 
parameters 

3- Normal, 
Myopathic 

and 
Neuropathi
c subjects  

Neuropathy is the 
most severe 
pathology, 

accounting for 10% 
to 85% of cases, with 
an average of 47.5 % 

 

Table 1 shows the topic method used to analyse musculoskeletal 
disorders. There are some of the methods used for method analysis MSD 
in the previous researchers, which are questionnaire, statistic analysis, 
qualitative analysis, and some of the articles is involving 
electromyography for time-frequency analysis and combining with 
classification method, and development of the technology to make it 
easier in interpretations.  

From all results in the table, total and mean power are frequency 
parameters, while mean absolute value, energy, and standard deviation 
are temporal parameters [29] and Work Organization Assessment 
Questionnaire (WOAQ). The purpose of the questionnaire is to 
investigate how physical function is assessed in people with 
musculoskeletal disorders (MSD) [30]. This technique is common used by 
researchers because it can involve more respondents and easy to handle 
and analyse.  

However, The Malaysian Social Security Organisation (SOCSO) has 
organised a Health Screening Programme (HSP) employing Functional 
Range of Motion (FROM), which has previously been performed in a 
rehabilitation clinic, to teach and diagnose patients using normal physical 
assessment procedures [31]. SOCSO existing functional testing is 
required the occupational therapist to do the subjective judgment in times 
of respondent to determine the capability of the patients [24]. The 
validation of results depends on the time consumed to fulfill the HSP 
tasks and compared to the standard time to determine the respondent's 
ability to perform functional reaching tasks (work capacity) [32], [33]. It 
is shown that to study MSD, the considering of EMG signal is become as 
one of important to be catered in MSD diagnosis.  

Most of the methods in the results table do not accurately reflect the 
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muscle’s condition. The reliability of the effort level determines whether 
the respondent is fit enough to continue working or not. In SOCSO, the 
decision is solely reliant on the instructor's decision, which has a 
significant disadvantage in that the instructor's opinion may be 
influenced by factors other than visual perception information [34]. 
Therefore, to solve all the issues,  muscle performance is the key to know 
the muscle recovery and suggest the average effect for intensive nixed 
exercise for strength and endurance exercise and massage to more 
effective for the subjects [9].  

Recent advancements in rehabilitation have revealed EMG pattern 
recognition as a promising approach with promise promising technique 
that has been crucial to use in clinical diagnosis [8]. Electromyography 
(EMG) signals are bioelectrical signals that are widely used as important 
tools in rehabilitation for providing information on neuromuscular 
activity from which it originates that will help to understand the human 
movements of activities [3], [35], [36]. There has been a lot of research 
done on MSDs that includes electromyography (EMG) in the activities 
[19], [37]. EMG is contained rich muscle information that would be used 
in clinical and rehabilitation applications [38]. The EMG is also used as a 
device for recording from the muscles’ residual limb, and electrical 
signals have been studied in research to provide information on muscular 
movements during any human or animal activity [36], [37], [39]. Figure 4 
shows the example of EMG signal for muscle inactive (contraction) and 
rest in baseline. 

 

 

 

 

 

 

 

              

 

 

 

      Figure 4: the example of EMG signal 
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The categorisation of surface electromyography (sEMG) signals is critical 
in man-machine interfaces for proper control of multiple-degree-of-
freedom prosthetic devices. The most important components of this 
field's research are data gathering, pre-processing, feature extraction, and 
classification, as well as their practicality in terms of application and 
reliability [40]. Figure 5 shows the example of classification true and false. 
Based on this table, it is shown the classification of axial rotational reach 
is the best compared to kneeling reach and kneeling to standing reach 
health screening program (HSP) in SOCSO. 

 

          
 
 
 

 

Figure 5: Positive predictive (PPV) and false discovery rate (FDR) for each type of tasks  

 

 

The EMG classification task has been extensively researched, leading to 
the creation of a number of methods, including statistically generated 
mathematical models, discriminative learning models, and genetic 
algorithm-based strategies [40]. Linear Discriminant Analysis (LDA), 
Support Vector Machines (SVMs), and Hidden Markov Models (HMM) 
are three major methodologies for classifying sEMG signals for 
controlling upper limb prostheses, all of which show a slight 
improvement in classification accuracy [41]. The including of EMG in 
MSD is very interesting to explore more in the future analysis of MSD to 
gain more information, not visualisation but also from inside the body. 
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3.0 CONCL U S ION  
 

Based on the review, it can be confirmed some of the findings from the 

previous reviews have evaluated relationships between the objectives, 

method for MSDs analysis, the sample size for the questionnaire 

(quantitative) and experimental (qualitative) and results from the 

performance of each method analysis. There is a lack of evidence to 

perform detailed method analysis to get the results. Further 

investigations are required to examine more detail about the type of 

equipment and experiment use to know the performance of MSDs by 

considering Electromyography (EMG) with the assessment of the 

muscles inside of the body. The information of equipment and method in 

the literature can provide the extra understanding the overview of the 

concept of MSDs analysis and what the important thing is MSD to be 

considered. Thus, this review paper will be helpful for future 

investigation and become one of the references to find the method of 

analysis  MSDs by considering on EMG signal. Besides that, this paper 

provides an overview of a current trend in analyzing of MSDs problem. 

It can provide more detailed information of the MSDs problem that 

would be helpful in the classification of the MSD from the muscles 

performances. 
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ABSTRACT: Sleep is a form of rest and getting enough sleep at the right 

times with suitable surrounding conditions is very important to maintain 

good health throughout life. The study aims to develop the end-user 

prototyping for a sleep monitoring system that measures the room ambient 

and body condition by using a wireless device utilizing Bluetooth Low Energy 

(BLE) embedded system. For the user interface, the Window application is 

used to display the collected data from separate ambient parameters and body 

condition embedded systems using Bluno Uno and Bluno Nano respectively. 

This sleep monitoring system is also equipped with a video and audio 

recording from the web camera and microphone of the built-in PC-based unit. 

Capturing data from body monitoring and ambient monitoring separate units 

are then transferred to the Window based application by using the BLE 

connection and lastly, the captured data are log into the MySQL database with 

the date and time stamp. The ambient condition system captured the room 

temperature and humidity, light intensity and rate of CO2 concentration. The 

body condition system, it is measuring body temperature, heart rate and body 

movement. Based on the device testing on sleep monitoring, each of the 

parameters measured is optimized to choose the best possible occurrence of 

ambience setting selection for optimal sleep quality. 

 

KEYWORDS: Sleep Monitoring Systems; Ambient Monitoring Systems; Body 
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Monitoring Systems; Bluetooth Low Energy (BLE). 

 

 

1.0 INTRODUCTION 

Sleep satisfaction is one of the keys to achieving the ultimate goal of a 
healthy body. While in sleep, our body is resting and conserving 
energy while restoration our tissues and cognitive function, emotion 
regulation, and immune health [1]. The pathological changes to our 
hormonal balance in the body between glycogen and adenosine after 
waking up from enough sleep making us feel refresh. Most of the 
restoration of energy occur while in non-REM sleep or also known as 
deep sleep [2]. On the other hand, the rapid eye movement (REM) sleep 
stage is when our eye is moving in a range of directions without 
sending any visual information to the brain [2]–[4]. Dreams often occur 
while in REM sleep and that is why REM sleep is also known as dream 
sleep. While sleeping with eyes closed, REM can be measured by using 
Electromyograph (EMG) device with electrodes located surrounding 
the eyes. Some other physiological body condition also varies while we 
are sleeping and this includes brain activity, body temperature, heart 
rate, oxygen level, carbon dioxide level and breathing rate [2]. This 
parameter often uses by the monitoring system that falls either under 
medical devices or consumer products to represent sleep quality.  

The sleep monitoring system function as a device to quantify the 
parameter of sleep quality representation characteristic based on its 
purpose [5]–[8]. For example, a medical-grade device that is used to 
measure obstructive sleep apnea (OSA) often utilises the 
pneumotachograph sensor, nasal pressure transducer, and oronasal 
thermal sensor with pulse oximetry to diagnose the abnormality in 
airflow, snoring breathing rate and oxygen level to diagnose the 
patient. On the other hand, the sleep monitoring device for personal 
daily use often measure heart rate and movement and estimated the 
quality of the sleep based on the continuous pattern and behaviour of 
the measured data.  

In this study, the aim is to propose the development of a sleep 
monitoring device for personal use that incorporated ambient and 
body condition measurement to get more insight on making a 
deductive interpretation toward an optimum sleep quality. Previously, 
such a conceptual system has been proposed in [7], [9] and with an 
additional measurement parameter that is done in this study, it 
requires a simple modification on device development configuration 
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and validation measurement that is emphasized by this manuscript. 
The functionality presented by the proposed device allowing the user 
to escalate the best surrounding condition that highly contribute to 
their personalise sleep preferences requirement to achieve a good sleep 
quality by customizing the ambient itself.  

This paper consists of four major sections including this section. 
Section 2.0 consists of the methodology development of the sleep 
monitoring system for the body and ambient. Then, Section 3.0 
encompasses the experiment result from on-device testing and 
discussion. Lastly, Section Error! Reference source not found. 
concludes the work and future direction. 

2.0 METHODOLOGY 

The proposed sleep monitoring system consists of two parts which are 
the ambient condition system and body condition system. An ambient 
condition system as shown in Figure 1 equipt with a sensor that can 
measure the surrounding environment such as temperature, humidity, 
light intensity, noise and quality of air.   

 

Figure 1: Circuit configuration for ambient monitoring system 

For the body condition system as shown in Figure 2, the sensor will 
monitor the body condition of the user while sleeping such as heart 
rate, body temperature and body movement. Both systems are 
equipped with Bluetooth Low Energy (BLE) connectivity and readings 
generated from both systems were collected by using PC for data 
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logging and visualisation. Both systems consist of a microcontroller 
that is programmed by using Arduino IDE and the Window 
Application that will display the readings was designed by using 
Microsoft Visual Studio 2015. The architecture of the sleep monitoring 
system can be seen in Figure 3. 

For the ambient monitoring system, BLUNO UNO is working with 
a digital temperature and humidity sensor (DHT22), a light-dependent 
resistor (LDR) and a CO2 gas sensor to capture the reading of light 
intensity, humidity, room temperature and quality of air in the 
surrounding ambient where the user sleep.  Then, in the body 
condition system, BLUNO NANO is working with a pulse sensor, 
accelerometer and thermistor to capture the reading of heart rate, body 
temperature and body movement while the user is sleeping. The 
functional prototype of the ambient condition system and body 
condition system has been designed and prepared as shown in Figure 
4. From the figure, the prototype of the body condition system has been 
designed in the form of a wearable belt that will be wear as a chest strap 
by the user during sleep and on the other hand, the prototype of the 
ambient condition system will be placed on the bedside table next to 
where the user is sleeping as shown in Figure 5. 

 

Figure 2: Circuit configuration for body condition monitoring system 
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Figure 3: Sleep monitoring system software architecture 

The data captured by both systems were transferred to window apps 
via Bluetooth connection. Window apps were designed using 
Microsoft Visual Studio 2015 will display the readings that have been 
received and logged the data into the MySQL database. Several tables 
were created in the database to update the time and value of each 
parameter. In addition, users can enable the video and audio recording 
functionality from a camera and microphone of the PC. Figure 6 shows 
the GUI of the sensor status triggered from both ambient and body 
condition monitoring systems on the designed Window Apps.  

    

(a) (b) 

Figure 4: Prototype of (a) ambient and (b) body condition monitoring 

system 
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Figure 5: Scenario of the sleep monitoring system while the subject is 

on the bed 

 

Figure 6: Graphical user interface (GUI) of Sleep monitoring system 

application 

In general, the flowchart of the overall development methodology can 
be seen in Error! Reference source not found.. The development starts 
with circuit design and fabrication for each monitoring system then 
followed by GUI development on Window Apps then continued by 
communicating each microcontroller used with the application on 
Window apps through serial communication port through BLE.  
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Figure 7: Overall methodology of sleep monitoring system 

development 

 

To use the sleep monitoring system, both the ambient condition system 
and body condition system need to be power on first. The body condition 
system was designed to be powered up by using a rechargeable lithium-
polymer battery for portability as it is directly fitted on the user body while 

 

Circuit design and fabrication 

Circuit functionality 
testing 

Arduino IDE programming for body condition monitoring 
system 

Arduino IDE programming for ambient condition monitoring 
system 

Serial communication 
checking 

Window Apps data reading dan logging 

GUI development on Window Apps system 

GUI and MYSQL 
verification 

Start 

End 

no 

yes 

no 

yes 

no 

yes 



Asian Journal of Medical Technology (AJMedTech) 

 

67 
 

the ambient condition system can be directly power up through a USB 
connection plug giving a convenient option to the user either to plug it 
directly on the PC or plug it into the USB power source. A lithium polymer 
battery also called LiPo battery is chosen to supply sufficient power to the 
body condition system as it is rechargeable, light and smaller and it can 
power up the system all night long without running out of battery. 

The second step is to pair both systems that have been powered on with 
PC through Bluetooth>Manage Bluetooth Device on system setting using 
with preset pairing password. Once it is paired, it will appear as 
“Bluno.Core.BlunoDevice” in the Bluetooth device list view in the Apps. 
GUI indicating both devices have been connected to the PC. Then, the 
Windows application will display the reading captured from the 
microcontroller. Windows application will ask the user permission to 
access the camera and audio. When it already gets permission, the video 
and audio recorder can be used by clicking on the “Record” button to 
logging all the parameters. 

 

3.0 RESULT AND DISCUSSION 

When getting ready, all the equipment is turned on and paired to the 
PC accordingly. Before going to sleep, the subject had to wear the belt 
stripe of the body condition monitoring system at the chest and hit the 
record button on the GUI of Window Apps.  

The experiment was carried out on a few different surrounding 
conditions to observe the effect of the individual perception on ambient 
conditions toward sleep quality. The experiment is done based on the 
normal sleep hour of the subject and the quality of sleep is measured 
based on the estimated duration of sleep transition. The example of the 
recorded data for both monitoring systems in the MySQL database is 
extracted and plot as can be seen in Figure 8 and Figure 9. From the 
plot of Figure 8, the sleep cycle from transition to light sleep, dream 
sleep and deep sleep is estimated based on the work done in [7], [9] 
where body conditions such as body temperature, heart rate and body 
movement are determined the sleep cycle stages.  

Four parameters of ambient were investigated which are 
temperature, light intensity, humidity and CO2 concentration on the air 
as each of these parameters were reported to give some of the effects 
toward sleep quality [10]–[15]. Even though the parameter of the 
ambient is measured accurately by the sensor but in this study, the 
perception of the subject is what mostly matters in this experimental 
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observation and at the same time, it is easier to control and maintain 
the value [16], [17]. The details on the ambient parameter perception 
set-up are listed in Table 1. Since CO2 concentration in the air can be 
affected by improper air ventilation in the bedroom throughout sleep 
time [11], the experiment is focused on the comparison between good 
air ventilation and improper air ventilation.  

 

Figure 8: Changes in ambient condition measured 

 

 

 

 

 

 

 

Figure 9: Changes in body condition measured 

After that, the ambient condition system is placed on the table beside 
the bed where the sample is sleeping. The experiment is ready to start 
as all the connections have been done. In addition, the experiments are 
carried out starting when the sample sleep until the sample wakes up 
to observe any changes in the body condition to analyze the quality of 
sleep of the subject in their usual sleeping bedroom.  

The main objective of running this experiment is to investigate 
preliminary in terms of each of the ambient parameters that can give 
effect to the duration of deep sleep and REM sleep. The measurement 
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of each set was repeated for three-night nonconsecutively and the 
average measuring time was recorded and can be seen in Table 2. Each 
of the parameters is set up by turning on the devices uses with similar 
parameters each time it has been used to resulting in a similar control 
environment every time the experiment took place. The city location 
where the experiment took place is in Melaka, Malaysia (2.1896° N, 
102.2501° E) where the climate here is hot and humid throughout the 
year.  

Table 1: Four settings of ambient parameter set up  

Ambient 

parameters 
Perception 

A targeted 

condition set up 
Other control parameters 

Setting 1: 

Humidity  

(a) Humid 
The humidifier was 

turn on  
• The airconditioning was  turn on  

• The light was turn off  

• The ventilation fan was turned on (b) Normal 
The humidifier was 

turn off 

Setting 2: 

Room 

Temperature 

(a) Cool 
The airconditioning 

was  turn on 
• The light was turn off  

• The ventilation fan was turned on  

• The humidifier was turn on (b) Normal 
The airconditioning 

was  turn off 

Setting 3: 

Light intensity 

(a) Bright The light was turn on • The airconditioning was  turn on  

• The ventilation fan was turned on  

• The humidifier was turn on 
(b) Dark The light was turn off 

Setting 4: 

CO2 concentration/ 

Air Ventilation 

(a) Good 

ventilation 

The ventilation fan 

was turned on 
• The airconditioning was  turn on  

• The light was turn off 

• The humidifier was turn on 
(b) Poor 

ventilation 

The ventilation fan 

was turned off 

Table 2: Average time taken of each sleep cycle for different 

parameters conditions of the ambient setting. 

Ambient 

Parameter 

Setting 

Average Taken Time in Hours and Minutes (HH:MM) 

Transition 
Light 

Sleep 

Deep 

Sleep 

REM 

Sleep 
Total Sleep 

Deep 

Sleep+REM 

Sleep 

Setting 1(a) 00:31 00:57 01:09 02:48 05:27±00:12 03:58 

Setting 1(b) 00:23 00:27 01:29 02:48 05:08±00:06 04:18 

Setting 2(a) 00:26 00:48 01:08 03:08 05:31±00:18 04:16 

Setting 2(b) 00:25 01:22 00:33 03:20 05:41±00:15 03:53 

Setting 3(a) 00:24 01:25 00:31 03:22 05:43±00:10 03:54 

Setting 3(b) 00:24 00:47 01:07 03:13 05:33±00:23 04:21 

Setting 4(a) 00:22 01:15 00:40 03:16 05:35±00:16 03:56 

Setting 4(b) 00:22 00:55 01:07 03:03 05:29±00:09 04:11 

Based on the result shown in Table 2, generally, in most of the cases, 
the subject took about three hours in the dream sleep mode and 30 
minutes to 1 hour in deep sleep mode. Comparatively by observing 
both deep sleep and REM sleep duration, subjects sleep better without 
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the humidifier, with air conditioning turn on, light off and good air 
ventilation. Although, this is not conclusive enough to suggest the best 
ambient parameter condition for all cases since sleep preferences vary 
from one person to another and their preferences on the ambient 
setting night also are influenced by many reasons that are open for 
future investigation. 

4.0 CONCLUSION  

This study demonstrates the optimization version of a sleep monitoring 
system that relates in between surrounding ambient parameters and body 
vital condition for sleep quality study. Although the presented result is still 
premature and requires a deep investigation on four elements of ambient that 
can contribute to the sleep overall sleep quality, the presented result is 
decisive enough to conclude that the surrounding ambient is impacting the 
quality of sleep. From the sleep stage and the duration of time in each of the 
sleep stages, sleep quality and the better surrounding environment for 
sleeping can be determined. Based on the result of the four sets of 
experiments, the suitable room ambient to get a better night quality sleep with 
the temperature slightly lower than normal room temperature, minimalise 
the use of a humidifier, low intensity of light with all the lamp switch off and 
lastly with good airflow to the room indicating good air ventilation. 
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