DOSIMETRIC CHARACTERISATION OF THE NANODOT OPTICALLY STIMULATED LUMINESCENT DOSIMETER FOR USE IN NATIONAL ELECTRON BEAM DOSIMETRY AUDIT SERVICES FOR RADIOTHERAPY FACILITIES

Authors

  • Norhayati binti Abdullah Agensi Nuklear Malaysia
  • Noramaliza Mohd Noor
  • Zamzarina Kamarul Zaman
  • Muzzamer Mohammad Zahid
  • Ngie Min Ung

DOI:

https://doi.org/10.32896/ajmedtech.v4n1.97-129

Keywords:

radiotherapy dosimetry audit, electron beam, nanoDot OSLD, optically stimulated luminescent dosimeter

Abstract

The Malaysian Nuclear Agency's secondary standard dosimetry laboratory (SSDL) aims to establish a national dosimetry audit service for radiotherapy facilities. For this purpose, a nanoDot optically stimulated luminescent dosimeter (OSLD) was selected as the transfer dosimeter for the audit program. The study aims to establish the basic dosimetric characteristics and associated correction factors of nanoDot OSLD for use in electron beam dosimetry audits. An investigation of the dosimetric characteristics of the nanoDot, comprising the sensitivity correction factor (SCF), dose-response linearity, beam energy dependency, signal depletion per readout, and signal fading when subjected to electron beams, was conducted. A preliminary electron beam dosimetry audit using nanoDot OSLD was performed for two radiotherapy facilities under both reference and non-reference conditions. The measurement uncertainty of the absorbed dose for the nanoDot OSLD was also estimated. The mean SCF of the 91 nanoDot OSLD was 1.001 ± 0.25%. The dose-response curves for the 6 MeV and 9 MeV beams exhibited linear characteristics, with a determination coefficient of 0.9982 for the dose range of 50–300 cGy. However, a high energy dependency was observed at 12 MeV, resulting in a deviation of 4.08% compared to that at 6 MeV. The nanoDot signal decreased by 0.03% after 100 readouts and faded by 3.20% at 70 days post-irradiation. It is noteworthy that all audit results from the six electron beams were in compliance with the tolerance limit of ± 5%, with mean dose deviations of -1.66% ± 0.81% and -1.37% ± 0.65% for the reference and non-reference conditions, respectively. The combined uncertainty was estimated to be ± 1.41% (coverage factor, k = 1). National electron beam dosimetry audits using nanoDot OSLD can now be implemented as a regular service.

References

ICRU, Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. International Commission on Radiation Units and Measurements, 1976.

IAEA, Accuracy Requirements and Uncertainties in Radiotherapy. Vienna, Austria: International Atomic Energy Agency, 2016.

J. Izewska, T. Bokulic, P. Kazantsev, P. Wesolowska, and D. van der Merwe, ‘50 Years of the IAEA/WHO postal dose audit programme for radiotherapy: what can we learn from 13756 results?’, Acta Oncol (Madr), vol. 59, no. 5, pp. 495–502, May 2020, doi: 10.1080/0284186X.2020.1723162.

C. H. Clark et al., ‘Radiotherapy dosimetry audit: Three decades of improving standards and accuracy in UK clinical practice and trials’, British Journal of Radiology, vol. 88, no. 1055, p. 20150251, 2015, doi: 10.1259/BJR.20150251.

J. Izewska, W. Lechner, and P. Wesolowska, ‘Global availability of dosimetry audits in radiotherapy: The IAEA dosimetry audit networks database’, Phys Imaging Radiat Oncol, vol. 5, pp. 1–4, Jan. 2018, doi: 10.1016/j.phro.2017.12.002.

D. Van Der Merwe et al., ‘Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency’, Acta Oncol (Madr), vol. 56, no. 1, pp. 1–6, 2016, doi: 10.1080/0284186X.2016.1246801.

C. H. Clark, N. Jornet, and L. P. Muren, ‘The role of dosimetry audit in achieving high quality radiotherapy’, Phys Imaging Radiat Oncol, vol. 5, pp. 85–87, Jan. 2018.

N. Abdullah, N., Kadni, T., & Dolah, ‘Malaysian participation in the IAEA/WHO TLD postal dose quality audit service: data analysis from 2011-2015.’, Jurnal Sains Nuklear Malaysia, vol. 30, no. 1, pp. 36–45, 2018.

Bahagian Kawalselia Radiasi Perubatan, ‘Senarai Radas Penyinaran Linac dan Cyberknife di Bawah Akta 304’, Portal Data Terbuka Malaysia. Accessed: Jan. 21, 2024. [Online]. Available: https://archive.data.gov.my/data/ms_MY/dataset/senarai-radas-linac-dan-cyberknife-di-bawah-akta-304

Bahagian Kawalselia Radiasi Perubatan, ‘Statistik Bilangan Radas Penyinaran Dan Bahan Radioaktif Dalam Perkhidmatan Radioterapi’, Portal Data Terbuka Malaysia. Accessed: Jan. 21, 2024. [Online]. Available: https://www.data.gov.my

N. Abdullah, N. Mohd Noor, J. K. Sangau, and M. T. Dolah, ‘The roles of Nuklear Malaysia’s SSDL in the national radiotherapy dosimetry audit’, Alor Setar, Kedah, Malaysia, 2022.

S. F. Kry et al., ‘Remote beam output audits: A global assessment of results out of tolerance’, Phys Imaging Radiat Oncol, vol. 7, pp. 39–44, Jul. 2018, doi: 10.1016/j.phro.2018.08.005.

C. W. Hurkmans, M. Christiaens, S. Collette, and D. C. Weber, ‘Beam Output Audit results within the EORTC Radiation Oncology Group network’, Radiation Oncology, 2016, doi: 10.1186/s13014-016-0733-4.

IAEA, ‘New Dosimetry Audit Service for Linacs Used in Radiotherapy’, International Atomic Energy Agency. Accessed: Apr. 25, 2022. [Online]. Available: https://www.iaea.org/newscenter/news/new-dosimetry-audit-service-for-linacs-used-in-radiotherapy?msclkid=16fef9f9c45711eca5f413e342ec33ed

M. McEwen, P. Sharpe, and S. Vörös, ‘Evaluation of alanine as a reference dosimeter for therapy level dose comparisons in megavoltage electron beams’, Metrologia, vol. 52, no. 2, pp. 272–279, Apr. 2015, doi: 10.1088/0026-1394/52/2/272.

A. Dimitriadis et al., ‘IAEA/WHO postal dosimetry audit methodology for electron beams using radio photoluminescent dosimeters’, Med Phys, no. June, pp. 1–8, 2023, doi: 10.1002/mp.16776.

L. de Prez et al., ‘An on-site dosimetry audit for high-energy electron beams’, Phys Imaging Radiat Oncol, vol. 5, pp. 44–51, Jan. 2018, doi: 10.1016/j.phro.2018.02.001.

J. M. Park, S. Y. Park, M. Chun, and S. T. Kim, ‘On-site audits to investigate the quality of radiation physics of radiation therapy institutions in the Republic of Korea’, Physica Medica, vol. 40, pp. 110–114, Aug. 2017, doi: 10.1016/j.ejmp.2017.07.021.

A.-C. Shiau et al., ‘Dosimetry audits in Taiwan radiotherapy departments’, BJR|Open, vol. 3, no. 1, 2021, doi: 10.1259/bjro.20210002.

P. Alvarez, A. Molineu, J. Lowenstein, P. Taylor, S. Kry, and D. Followill, ‘IROC Houston QA center S independent peer review quality assurance program for the veteran affairs VA radiotherapy facilities’, Med Phys, vol. 44, no. 6, p. 2881, 2017.

T. Kron, A. Haworth, and I. Williams, ‘Dosimetry for audit and clinical trials: Challenges and requirements’, in Journal of Physics: Conference Series, Institute of Physics Publishing, 2013. doi: 10.1088/1742-6596/444/1/012014.

P. E. Wesolowska, A. Cole, T. Santos, T. Bokulic, P. Kazantsev, and J. Izewska, ‘Characterization of three solid state dosimetry systems for use in high energy photon dosimetry audits in radiotherapy’, Radiat Meas, vol. 106, pp. 556–562, Nov. 2017, doi: 10.1016/j.radmeas.2017.04.017.

R. Ponmalar, R. Manickam, K. Ganesh, S. Saminathan, A. Raman, and H. Godson, ‘Dosimetric characterization of optically stimulated luminescence dosimeter with therapeutic photon beams for use in clinical radiotherapy measurements’, J Cancer Res Ther, vol. 13, no. 2, p. 304, Apr. 2017, doi: 10.4103/0973-1482.199432.

K. Hoshida and F. Araki, ‘Physica Medica Response of a nanoDot OSLD system in megavoltage photon beams’, Physica Medica, vol. 64, no. June, pp. 74–80, 2019, doi: 10.1016/j.ejmp.2019.06.014.

A. Ruiz, J. Irazoqui, S. Bianchini, and D. Tolabin, ‘PO-1714 Commissioning of an OSLD dosimetric system for level I postal audits for radiotherapy in Argentina’, Radiotherapy and Oncology, vol. 161, 2021, doi: 10.1016/s0167-8140(21)08165-2.

S. F. Kry et al., ‘AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs’, Med Phys, vol. 47, no. 2, pp. e19–e51, Feb. 2020, doi: 10.1002/MP.13839.

P. A. Jursinic, ‘Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements’, Med Phys, vol. 34, no. 12, pp. 4594–4604, 2007, doi: 10.1118/1.2804555.

E. G. Yukihara, G. Mardirossian, M. Mirzasadeghi, S. Guduru, and S. Ahmad, ‘Evaluation of Al2O3:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy’, Med Phys, vol. 35, no. 1, p. 260, 2008, doi: 10.1118/1.2816106.

IAEA, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Vienna, Austria: International Atomic Energy Agency, 2000. doi: 10.1097/00004032-200111000-00017.

N. Abdullah, N. M. Noor, M. T. Dolah, and J. K. Sangau, ‘Precision and reliability: Calibration coefficients and long-term stability analysis of radiotherapy dosimeters calibrated by SSDL, Nuklear Malaysia’, Asian Journal Of Medical Technology, vol. 3, no. 2, pp. 15–32, 2023.

E. G. Yukihara and S. W. McKeever, ‘Optically stimulated luminescence (OSL) dosimetry in medicine’, Phys Med Biol, vol. 53, no. 20, 2008, doi: 10.1088/0031-9155/53/20/R01.

D. Marre et al., ‘Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks’, Phys Med Biol, vol. 45, no. 12, pp. 3657–3674, 2000, doi: 10.1088/0031-9155/45/12/311.

JCGM-100, Evaluation of measurement data — Guide to the expression of uncertainty in measurement, First edit., vol. 50, no. September. 2008. [Online]. Available: http://www.bipm.org/en/publications/guides/gum.html

Y. Retna Ponmalar, R. Manickam, S. Sathiyan, K. M. Ganesh, R. Arun, and H. F. Godson, ‘Response of nanodot optically stimulated luminescence dosimeters to therapeutic electron beams’, J Med Phys, vol. 42, no. 1, pp. 42–47, Jan. 2017, doi: 10.4103/0971-6203.202424.

G. K. Jain, A. Chougule, A. Kaliyamoorthy, and S. K. Akula, ‘Study of dosimetric characteristics of a commercial optically stimulated luminescence system’, J Radiother Pract, vol. 16, no. 4, pp. 461–475, Dec. 2017, doi: 10.1017/S1460396917000346.

L. Dunn, J. Lye, J. Kenny, J. Lehmann, I. Williams, and T. Kron, ‘Commissioning of optically stimulated luminescence dosimeters for use in radiotherapy’, Radiat Meas, vol. 51–52, pp. 31–39, Apr. 2013, doi: 10.1016/j.radmeas.2013.01.012.

L. J. S. Raj, B. Pearlin, B. S. T. Peace, R. Isiah, and I. R. R. Singh, ‘Characterisation and use of OSLD for in vivo dosimetry in head and neck intensity-modulated radiation therapy’, J Radiother Pract, vol. 20, no. 4, pp. 448–454, Dec. 2021, doi: 10.1017/S146039692000062X.

P. Kumar et al., ‘Relative energy response of indigenously developed optically stimulated luminescence dosimeters Al2O3:C, LiMgPO4:B and LiCaAlF6:Eu,Y in therapeutic photon and electron beams’, Luminescence, vol. 35, no. 8, pp. 1217–1222, Dec. 2020, doi: 10.1002/BIO.3832.

F. Attix, Introduction to radiological physics and radiation dosimetry. USA,: John Wüey & Sons., 1986.

P. N. Mobit and T. Kron, ‘Applications of Thermoluminescent Dosimeters in Medicine’, in Microdosimetric Response of Physical and Biological Systems to Low- and High-LET Radiations Theory and Applications to Dosimetry, Elsevier, 2006, pp. 411–465. doi: 10.1016/B978-044451643-5/50019-8.

T. Kirby, W. Hanson, and D. Johnston, ‘Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters’, Med Phys, vol. 19, no. 6, pp. 1427–1433, 1992, doi: 10.1118/1.596797.

P. A. Jursinic, ‘Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose’, Med Phys, vol. 37, no. 1, 2010, doi: 10.1118/1.3267489.

Published

2024-05-31

How to Cite

binti Abdullah, N., Mohd Noor, N., Kamarul Zaman, Z., Mohammad Zahid, M., & Ung, N. M. (2024). DOSIMETRIC CHARACTERISATION OF THE NANODOT OPTICALLY STIMULATED LUMINESCENT DOSIMETER FOR USE IN NATIONAL ELECTRON BEAM DOSIMETRY AUDIT SERVICES FOR RADIOTHERAPY FACILITIES. Asian Journal Of Medical Technology, 4(1), 97–129. https://doi.org/10.32896/ajmedtech.v4n1.97-129